2021-11-21 22:22:01 +01:00
|
|
|
/*
|
|
|
|
LA: linear algebra C++ interface library
|
|
|
|
Copyright (C) 2021 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
//this header defines some simple algorithms independent of external libraries
|
2021-11-22 14:22:19 +01:00
|
|
|
//using small runtime-constant size matrices and vectors
|
2021-11-21 22:22:01 +01:00
|
|
|
//particularly intended to embedded computers
|
|
|
|
//it should be compilable separately from LA as well as being a part of LA
|
|
|
|
|
|
|
|
#ifndef _SIMPLE_H_
|
|
|
|
#define _SIMPLE_H_
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#ifndef AVOID_STDSTREAM
|
|
|
|
#include <iostream>
|
|
|
|
#endif
|
|
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
namespace LA_Simple {
|
|
|
|
|
|
|
|
//a simple gauss elimination as a template also for larger-size matrices in form of C-style arrays
|
|
|
|
#define SWAP(a,b) {T temp=(a);(a)=(b);(b)=temp;}
|
|
|
|
|
|
|
|
template<typename T, int n, int m>
|
2021-11-22 14:22:19 +01:00
|
|
|
T simple_gaussj(T (&a)[n][n],T (&b)[m][n]) //returns determinant, m is number of rhs to solve, inverse in a, solution in b
|
2021-11-21 22:22:01 +01:00
|
|
|
{
|
|
|
|
int indxc[n],indxr[n],ipiv[n];
|
2021-11-22 17:00:04 +01:00
|
|
|
int i,j,k,l,ll;
|
|
|
|
int irow=0,icol=0;
|
2021-11-21 22:22:01 +01:00
|
|
|
T det,big,dum,pivinv;
|
|
|
|
|
|
|
|
det=1;
|
|
|
|
for (j=0;j<n;j++) ipiv[j]=0;
|
|
|
|
for (i=0;i<n;i++) {
|
|
|
|
big=0.0;
|
|
|
|
for (j=0;j<n;j++)
|
|
|
|
if (ipiv[j] != 1)
|
|
|
|
for (k=0;k<n;k++) {
|
|
|
|
if (ipiv[k] == 0) {
|
|
|
|
if (abs(a[j][k]) >= big) {
|
|
|
|
big=abs(a[j][k]);
|
|
|
|
irow=j;
|
|
|
|
icol=k;
|
|
|
|
}
|
|
|
|
} else if (ipiv[k] > 1) {return 0;}
|
|
|
|
}
|
|
|
|
++(ipiv[icol]);
|
|
|
|
if (irow != icol) {
|
|
|
|
det = (-det);
|
|
|
|
for (l=0;l<n;l++) SWAP(a[irow][l],a[icol][l])
|
|
|
|
for (l=0;l<m;l++) SWAP(b[l][irow],b[l][icol])
|
|
|
|
}
|
|
|
|
indxr[i]=irow;
|
|
|
|
indxc[i]=icol;
|
|
|
|
if (a[icol][icol] == 0) {return 0;}
|
|
|
|
pivinv=1/a[icol][icol];
|
|
|
|
det *= a[icol][icol];
|
|
|
|
a[icol][icol]=1.0;
|
|
|
|
for (l=0;l<n;l++) a[icol][l] *= pivinv;
|
|
|
|
for (l=0;l<m;l++) b[l][icol] *= pivinv;
|
|
|
|
for (ll=0;ll<n;ll++)
|
|
|
|
if (ll != icol) {
|
|
|
|
dum=a[ll][icol];
|
|
|
|
a[ll][icol]=0.0;
|
|
|
|
for (l=0;l<n;l++) a[ll][l] -= a[icol][l]*dum;
|
|
|
|
for (l=0;l<m;l++) b[l][ll] -= b[l][icol]*dum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (l=n-1;l>=0;l--) {
|
|
|
|
if (indxr[l] != indxc[l])
|
|
|
|
for (k=0;k<n;k++)
|
|
|
|
SWAP(a[k][indxr[l]],a[k][indxc[l]]);
|
|
|
|
}
|
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef SWAP
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T, int n>
|
|
|
|
class simple_linfit {
|
|
|
|
public:
|
2021-11-22 14:22:19 +01:00
|
|
|
T fitmat[n][n];
|
|
|
|
T rhsmat[1][n];
|
|
|
|
T fitcoef[n];
|
|
|
|
int npoints;
|
2021-11-22 14:45:06 +01:00
|
|
|
void clear(bool keepresults=false) {npoints=0; memset(&fitmat[0][0],0,n*n*sizeof(T)); memset(&rhsmat[0][0],0,1*n*sizeof(T)); if(!keepresults) memset(&fitcoef[0],0,n*sizeof(T));};
|
|
|
|
simple_linfit() {clear(false);}
|
2021-11-22 17:06:48 +01:00
|
|
|
const T &operator[](int i) const {return fitcoef[i];}
|
2021-11-22 14:22:19 +01:00
|
|
|
void input(const T (&funcs)[n], const T y)
|
|
|
|
{
|
|
|
|
++npoints;
|
|
|
|
for(int i=0; i<n; ++i)
|
|
|
|
{
|
|
|
|
for(int j=0; j<=i; ++j)
|
|
|
|
{
|
|
|
|
T tmp=funcs[i]*funcs[j];
|
|
|
|
fitmat[i][j] += tmp;
|
|
|
|
if(i!=j) fitmat[j][i] += tmp;
|
|
|
|
}
|
|
|
|
rhsmat[0][i] += funcs[i]*y;
|
|
|
|
}
|
|
|
|
}
|
2021-11-22 23:06:22 +01:00
|
|
|
T solve(const T preserve=0)
|
2021-11-22 14:22:19 +01:00
|
|
|
{
|
|
|
|
//for(int i=0; i<n; ++i) {for(int j=0; j<n; ++j) std::cout <<fitmat[i][j]<<" "; std::cout<<std::endl;}
|
|
|
|
//for(int j=0; j<n; ++j) std::cout <<rhsmat[0][j]<<" "; std::cout<<std::endl;
|
|
|
|
if(npoints<n) return 0;
|
|
|
|
if(preserve)
|
|
|
|
{
|
|
|
|
T fitwork[n][n];memcpy(fitwork,fitmat,n*n*sizeof(T));
|
|
|
|
T rhswork[1][n];memcpy(rhswork,rhsmat,1*n*sizeof(T));
|
|
|
|
T det = simple_gaussj(fitwork,rhswork);
|
|
|
|
memcpy(&fitcoef[0],&rhswork[0][0],n*sizeof(T));
|
2021-11-22 23:06:22 +01:00
|
|
|
if(preserve!=(T)1) //scale weight of old data points
|
|
|
|
{
|
|
|
|
for(int i=0; i<n; ++i) for(int j=0; j<n; ++j) fitmat[i][j] *= preserve;
|
|
|
|
for(int i=0; i<n; ++i) rhsmat[0][i] *= preserve;
|
|
|
|
}
|
2021-11-22 14:22:19 +01:00
|
|
|
return det;
|
|
|
|
}
|
|
|
|
T det = simple_gaussj(fitmat,rhsmat);
|
|
|
|
memcpy(&fitcoef[0],&rhsmat[0][0],n*sizeof(T));
|
2021-11-22 14:45:06 +01:00
|
|
|
clear(true);
|
2021-11-22 14:22:19 +01:00
|
|
|
return det;
|
|
|
|
}
|
|
|
|
|
2021-11-21 22:22:01 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//stream I/O
|
|
|
|
#ifndef AVOID_STDSTREAM
|
2021-11-22 14:22:19 +01:00
|
|
|
|
|
|
|
template <typename T, int n>
|
|
|
|
std::ostream& operator<<(std::ostream &o, const simple_linfit<T,n> &f)
|
|
|
|
{
|
|
|
|
for(int i=0; i<n; ++i) o<<f.fitcoef[i]<<" ";
|
|
|
|
return o;
|
|
|
|
}
|
2021-11-21 22:22:01 +01:00
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
}//namespace
|
|
|
|
#endif /* _SIMPLE_H_ */
|
|
|
|
|