gauss elimination for vecmat3
This commit is contained in:
68
vecmat3.h
68
vecmat3.h
@@ -1,6 +1,6 @@
|
||||
/*
|
||||
LA: linear algebra C++ interface library
|
||||
Copyright (C) 2020 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
||||
Copyright (C) 2020-2021 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -46,6 +46,9 @@ class Vec3
|
||||
public:
|
||||
//just plain old data
|
||||
T q[3];
|
||||
T (&elements())[3] {return q;};
|
||||
const T (&elements()const)[3] {return q;};
|
||||
|
||||
//
|
||||
Vec3(void) {};
|
||||
Vec3(const T x, const T u=0, const T v=0) {q[0]=x; q[1]=u; q[2]=v;}; //Vec3 from real(s)
|
||||
@@ -98,6 +101,8 @@ public:
|
||||
//just plain old data
|
||||
T q[3][3];
|
||||
//
|
||||
T (&elements())[3][3] {return q;};
|
||||
const T (&elements()const)[3][3] {return q;};
|
||||
Mat3(void) {};
|
||||
Mat3(const T (&a)[3][3]) {memcpy(q,a,3*3*sizeof(T));}
|
||||
Mat3(const T x) {memset(q,0,9*sizeof(T)); q[0][0]=q[1][1]=q[2][2]=x;}; //scalar matrix
|
||||
@@ -148,9 +153,70 @@ public:
|
||||
void symmetrize(); //average offdiagonal elements
|
||||
void eival_sym(Vec3<T> &w) const; //only for real symmetric matrix, symmetry is not checked
|
||||
void eivec_sym(Vec3<T> &w, Mat3 &v) const; //only for real symmetric matrix, symmetry is not checked
|
||||
T norm(const T scalar = 0) const;
|
||||
};
|
||||
|
||||
|
||||
//a simple gauss elimination as a template also for larger-size matrices in form of C-style arrays
|
||||
#define SWAP(a,b) {T temp=(a);(a)=(b);(b)=temp;}
|
||||
|
||||
template<typename T, int n, int m>
|
||||
T simple_gaussj(T (&a)[n][n],T (&b)[m][n]) //returns determinant, m is number of rhs to solve
|
||||
{
|
||||
int indxc[n],indxr[n],ipiv[n];
|
||||
int i,icol,irow,j,k,l,ll;
|
||||
T det,big,dum,pivinv;
|
||||
|
||||
det=1;
|
||||
for (j=0;j<n;j++) ipiv[j]=0;
|
||||
for (i=0;i<n;i++) {
|
||||
big=0.0;
|
||||
for (j=0;j<n;j++)
|
||||
if (ipiv[j] != 1)
|
||||
for (k=0;k<n;k++) {
|
||||
if (ipiv[k] == 0) {
|
||||
if (abs(a[j][k]) >= big) {
|
||||
big=abs(a[j][k]);
|
||||
irow=j;
|
||||
icol=k;
|
||||
}
|
||||
} else if (ipiv[k] > 1) {return 0;}
|
||||
}
|
||||
++(ipiv[icol]);
|
||||
if (irow != icol) {
|
||||
det = (-det);
|
||||
for (l=0;l<n;l++) SWAP(a[irow][l],a[icol][l])
|
||||
for (l=0;l<m;l++) SWAP(b[l][irow],b[l][icol])
|
||||
}
|
||||
indxr[i]=irow;
|
||||
indxc[i]=icol;
|
||||
if (a[icol][icol] == 0) {return 0;}
|
||||
pivinv=1/a[icol][icol];
|
||||
det *= a[icol][icol];
|
||||
a[icol][icol]=1.0;
|
||||
for (l=0;l<n;l++) a[icol][l] *= pivinv;
|
||||
for (l=0;l<m;l++) b[l][icol] *= pivinv;
|
||||
for (ll=0;ll<n;ll++)
|
||||
if (ll != icol) {
|
||||
dum=a[ll][icol];
|
||||
a[ll][icol]=0.0;
|
||||
for (l=0;l<n;l++) a[ll][l] -= a[icol][l]*dum;
|
||||
for (l=0;l<m;l++) b[l][ll] -= b[l][icol]*dum;
|
||||
}
|
||||
}
|
||||
for (l=n-1;l>=0;l--) {
|
||||
if (indxr[l] != indxc[l])
|
||||
for (k=0;k<n;k++)
|
||||
SWAP(a[k][indxr[l]],a[k][indxc[l]]);
|
||||
}
|
||||
return det;
|
||||
}
|
||||
|
||||
#undef SWAP
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//stream I/O
|
||||
#ifndef AVOID_STDSTREAM
|
||||
|
||||
Reference in New Issue
Block a user