*** empty log message ***
This commit is contained in:
parent
1855f4c2f1
commit
175fea5cfd
226
gmres.h
226
gmres.h
@ -3,11 +3,235 @@
|
||||
#include "mat.h"
|
||||
#include "sparsemat.h"
|
||||
#include "nonclass.h"
|
||||
#include <iomanip>
|
||||
#include "auxstorage.h"
|
||||
|
||||
//GMRES solution of a linear system
|
||||
|
||||
//matrix can be any class which has nrows(), ncols(), diagonalof() and NRVec::gemv() available
|
||||
//does not even have to be explicitly stored
|
||||
|
||||
|
||||
/* GMRES-Algorithmus nach Schwarz, S. 552, original impl. M. Warken */
|
||||
/* allows zeilen!= spalten*/
|
||||
/* Matrix can be any class which provides nrows(), ncols(), nrvec::gemv(), and precondition(), does not have to store elements explicitly */
|
||||
|
||||
template<class T>
|
||||
void gmres_backsubstitute(const NRMat<T> &R, NRVec<T> &c, const NRVec<T> &d, const int k)
|
||||
{
|
||||
c.copyonwrite();
|
||||
if(R(k,k)==0.) laerror("singular matrix in gmres triangular solution");
|
||||
c[k] = d[k]/R(k,k);
|
||||
for (int i=k-1;i>=0;i--) c[i] = (d[i]-xdot(k-i,&R(i,i+1),1,&c[i+1],1)) / R(i,i);
|
||||
}
|
||||
|
||||
|
||||
//x contains ev. initial guess and on return the solution
|
||||
template<typename T, typename Matrix>
|
||||
extern void gmres(const Matrix &bigmat, const NRVec<T> &b, NRVec<T> &x, const bool doguess=1, const double eps=1e-7, const int MAXIT=50, const bool verbose=1, bool square=1,const bool precondition=1, int neustart=0, const int incore=1);
|
||||
void gmres(const Matrix &bigmat, const NRVec<T> &b, NRVec<T> &x, const bool doguess, const double eps, const int MAXIT, const bool verbose, bool square,const bool precondition, int neustart, const int incore)
|
||||
{
|
||||
int zeilen=bigmat.nrows();
|
||||
int spalten=bigmat.ncols();
|
||||
if(spalten==1) laerror("gmres does not work for n==1, use conjgrad if you need this trivial case");
|
||||
if(x.size()!=spalten || b.size() != zeilen) laerror("incompatible vectors and matrix sizes in GMRES");
|
||||
|
||||
if(zeilen!=spalten) square=0;
|
||||
if(!neustart) neustart = zeilen/10;
|
||||
if (neustart < 10) neustart = 10;
|
||||
x.copyonwrite();
|
||||
|
||||
bool flag;
|
||||
double beta,beta_0;
|
||||
double d_alt=0;
|
||||
|
||||
AuxStorage<T> *st;
|
||||
NRVec<T> *v;
|
||||
NRVec<T> r_k(spalten),z(spalten);
|
||||
NRVec<T> cci(MAXIT+1),ssi(MAXIT+1),c(MAXIT+1),d(MAXIT+1);
|
||||
NRMat<T> H(MAXIT+1,MAXIT+1);
|
||||
T ci,si;
|
||||
v = new NRVec<T>[incore?MAXIT+1:1];
|
||||
st = incore?NULL:new AuxStorage<T>;
|
||||
|
||||
if(doguess)
|
||||
{
|
||||
x.gemv(0,bigmat,'t',-1.,b);
|
||||
if(precondition) bigmat.diagonalof(x,true);
|
||||
x.normalize();
|
||||
}
|
||||
|
||||
neustart:
|
||||
for (int l=0;l<neustart;l++) // main loop for restarts
|
||||
{
|
||||
if(square) // r_0 = b + A x_0
|
||||
{
|
||||
r_k.gemv(0,bigmat,'n',1,x);
|
||||
r_k -= b;
|
||||
}
|
||||
else //r_0 = A^t b + A^t A x_0
|
||||
{
|
||||
NRVec<T> dum(zeilen);
|
||||
dum.gemv(0,bigmat,'n',1,x);
|
||||
r_k.gemv(0,bigmat,'t',1,dum);
|
||||
z.gemv(0,bigmat,'t',-1.,b);
|
||||
r_k += z;
|
||||
}
|
||||
|
||||
if(precondition) bigmat.diagonalof(r_k,true);
|
||||
|
||||
beta = r_k.norm();
|
||||
if(l==0) beta_0 = beta;
|
||||
v[0] = r_k* (1./beta);
|
||||
if(!incore) st->put(v[0],0);
|
||||
|
||||
// Iteration
|
||||
for (int k=0;k<MAXIT;k++)
|
||||
{
|
||||
// *iter=l*MAXIT+k;
|
||||
//if(dowarn) if (l>0) fprintf(stderr,"gmres: restart %d\n",l);
|
||||
|
||||
// Schritt 1
|
||||
if(!incore) st->get(v[0],k);
|
||||
if(square)
|
||||
{
|
||||
z.gemv(0,bigmat,'n',1,v[incore?k:0]);
|
||||
}
|
||||
else
|
||||
{
|
||||
NRVec<T> dum(zeilen);
|
||||
dum.gemv(0,bigmat,'n',1,v[incore?k:0]);
|
||||
z.gemv(0,bigmat,'t',1,dum);
|
||||
}
|
||||
if(precondition) bigmat.diagonalof(z,true);
|
||||
|
||||
//Schritte 2 und 3
|
||||
for (int i=0;i<=k;i++)
|
||||
{
|
||||
if(!incore) st->get(v[0],i);
|
||||
H(i,k) = z*v[incore?i:0];
|
||||
z.axpy(-H(i,k),v[incore?i:0]);
|
||||
}
|
||||
|
||||
//Schritt 4
|
||||
double tmp;
|
||||
H(k+1,k) = tmp= z.norm();
|
||||
if(tmp < 1.e-2*eps )
|
||||
{
|
||||
if(verbose) cerr <<("gmres restart performed\n");
|
||||
// Abbruchbedingung, konstruiere x_k
|
||||
for (int i=0;i<k;i++)
|
||||
{
|
||||
ci = cci[i];si = ssi[i];
|
||||
for (int j=0;j<k;j++)
|
||||
{
|
||||
T a = H(i,j);
|
||||
H(i,j) = ci*a+si*H(i+1,j);
|
||||
H(i+1,j) = -si*a+ci*H(i+1,j);
|
||||
}
|
||||
}
|
||||
// Loese R_k c = - d_k
|
||||
d *= -1.;
|
||||
gmres_backsubstitute(H,c,d,k-1);
|
||||
for (int i=0;i<k-1;i++)
|
||||
{
|
||||
if(!incore) st->get(v[0],i);
|
||||
x.axpy(c[i],v[incore?i:0]);
|
||||
}
|
||||
flag=0; goto neustart;
|
||||
} // Ende Abbruch
|
||||
|
||||
v[incore?k+1:0] = z * (1./H(k+1,k));
|
||||
if(!incore) st->put(v[0],k+1);
|
||||
|
||||
// Schritt 5 - berechne Phi_k
|
||||
for (int j=0;j<k+2;j++) d[j] = H(j,k);
|
||||
for (int i=0;i<k;i++)
|
||||
{
|
||||
ci = cci[i];
|
||||
si = ssi[i];
|
||||
T a = d[i];
|
||||
d[i] = ci*a+si*d[i+1];
|
||||
d[i+1] = -si*a+ci*d[i+1];
|
||||
}
|
||||
//phi[k]= atan(d[k+1]/d[k]);
|
||||
ci=hypot(d[k],d[k+1]);
|
||||
cci[k]=d[k]/ci;
|
||||
ssi[k]=d[k+1]/ci;
|
||||
|
||||
//berechne neuen d-Vektor
|
||||
d= 0.;
|
||||
d[0]=beta;
|
||||
for (int i=0;i<=k;i++)
|
||||
{
|
||||
ci = cci[i];si = ssi[i];
|
||||
T a = d[i];
|
||||
d[i] = ci*a+si*d[i+1];
|
||||
d[i+1] = -si*a+ci*d[i+1];
|
||||
}
|
||||
|
||||
//Schritt 6: Konvergenz?
|
||||
if(verbose) cout << "gmres iter "<<l<<" "<<k<<" resid "
|
||||
<<setw(0)<<setiosflags(ios::scientific)<<setprecision(8)
|
||||
<<abs(d[k+1])<< " thr "<<eps*beta_0<< " reduction "
|
||||
<<setw(5)<<setprecision(2)<<resetiosflags(ios::scientific)
|
||||
<<(d_alt - abs(d[k+1]))/d_alt*100<< "\n" <<setprecision(12);
|
||||
d_alt = abs(d[k+1]);
|
||||
//*err= d_alt;
|
||||
if (d_alt < eps*beta_0)
|
||||
{
|
||||
// konstruiere R_k
|
||||
for (int i=0;i<k;i++)
|
||||
{
|
||||
ci = cci[i];
|
||||
si = ssi[i];
|
||||
for (int j=0;j<k;j++)
|
||||
{
|
||||
T a = H(i,j);
|
||||
H(i,j) = ci*a+si*H(i+1,j);
|
||||
H(i+1,j) = -si*a+ci*H(i+1,j);
|
||||
}
|
||||
}
|
||||
|
||||
// Loese R_k c = - d_k
|
||||
d *= -1.;
|
||||
gmres_backsubstitute(H,c,d,k-1);
|
||||
for(int i=0;i<k;i++)
|
||||
{
|
||||
if(!incore) st->get(v[0],i);
|
||||
x.axpy(c[i],v[incore?i:0]);
|
||||
}
|
||||
flag=0; goto myreturn;
|
||||
}
|
||||
} // k-Schleife
|
||||
|
||||
// zum Neustart: Konstruiere R_k
|
||||
for (int i=0;i<MAXIT;i++)
|
||||
{
|
||||
ci = cci[i];si = ssi[i];
|
||||
for (int j=0;j<MAXIT;j++)
|
||||
{
|
||||
T a = H(i,j);
|
||||
H(i,j) = ci*a+si*H(i+1,j);
|
||||
H(i+1,j) = -si*a+ci*H(i+1,j);
|
||||
}
|
||||
}
|
||||
|
||||
// Loese R_k c = - d_k
|
||||
d *= -1.;
|
||||
gmres_backsubstitute(H,c,d,MAXIT-1);
|
||||
for(int i=0;i<MAXIT;i++)
|
||||
{
|
||||
if(!incore) st->get(v[0],i);
|
||||
x.axpy(c[i],v[incore?i:0]);
|
||||
}
|
||||
|
||||
} // l schleife
|
||||
flag=1;
|
||||
|
||||
myreturn:
|
||||
delete[] v;
|
||||
if(!incore) delete st;
|
||||
|
||||
if(flag) laerror("no convergence in GMRES");
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user