GF(2^n) arithmetics in bitvector
This commit is contained in:
parent
f0325ba6f5
commit
1e00570f66
65
bitvector.cc
65
bitvector.cc
@ -296,12 +296,13 @@ return n;
|
||||
|
||||
//NOTE: naive algorithm, just for testing
|
||||
//does not perform modulo irreducible polynomial, is NOT GF(2^n) multiplication
|
||||
bitvector bitvector::operator*(const bitvector &rhs) const
|
||||
bitvector bitvector::multiply(const bitvector &rhs, bool autoresize) const
|
||||
{
|
||||
bitvector r(size()+rhs.size());
|
||||
int maxsize=size(); if(rhs.size()>maxsize) maxsize=rhs.size();
|
||||
bitvector r(autoresize?size()+rhs.size():maxsize);
|
||||
r.clear();
|
||||
bitvector tmp(rhs);
|
||||
tmp.resize(size()+rhs.size(),true);
|
||||
if(autoresize) tmp.resize(size()+rhs.size(),true);
|
||||
for(int i=0; i<=degree(); ++i)
|
||||
{
|
||||
if((*this)[i]) r+= tmp;
|
||||
@ -310,6 +311,60 @@ for(int i=0; i<=degree(); ++i)
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
//this is GF(2^n) multiplication
|
||||
bitvector bitvector::field_mult(const bitvector &rhs, const bitvector &irpolynom) const
|
||||
{
|
||||
int d=irpolynom.degree();
|
||||
if(d>size()||d>rhs.size()) laerror("inconsistent dimensions in field_mult");
|
||||
bitvector r(size());
|
||||
r.clear();
|
||||
bitvector tmp(*this);
|
||||
tmp.resize(size()+1,true);
|
||||
int rd=rhs.degree();
|
||||
for(int i=0; i<=rd; ++i) //avoid making a working copy of rhs and shifting it
|
||||
{
|
||||
if(rhs[i]) r+= tmp;
|
||||
tmp.leftshift(1,false);
|
||||
if(tmp[d]) tmp -= irpolynom;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//this is GF(2^n) multiplicative inverseion
|
||||
//cf. https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
|
||||
bitvector bitvector::field_inv(const bitvector &irpolynom) const
|
||||
{
|
||||
int d=irpolynom.degree();
|
||||
if(d>size()) laerror("inconsistent dimensions in field_inv");
|
||||
|
||||
bitvector t(size()); t.clear();
|
||||
bitvector newt(size()); newt.clear(); newt.set(0);
|
||||
bitvector r(irpolynom); r.copyonwrite();
|
||||
bitvector newr(*this); if(r.size()>newr.size()) newr.resize(r.size(),true); newr.copyonwrite();
|
||||
int rs=r.size();
|
||||
|
||||
|
||||
while(!newr.is_zero())
|
||||
{
|
||||
//std::cout <<"r "<<r<<" newr "<<newr <<" "; std::cout <<"t "<<t<<" newt "<<newt; std::cout <<std::endl;
|
||||
bitvector remainder(rs);
|
||||
bitvector quotient = r.division(newr,remainder);
|
||||
r=newr; newr=remainder;
|
||||
remainder= t - quotient.multiply(newt,false); //avoid size growth
|
||||
t=newt; newt=remainder;
|
||||
}
|
||||
|
||||
if(r.degree()>0) laerror("field_inv: polynomial is not irreducible or input is its multiple");
|
||||
if(!r[0]) laerror("zero in field_inv");
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void bitvector::resize(const unsigned int n, bool preserve)
|
||||
{
|
||||
int old=size();
|
||||
@ -338,9 +393,9 @@ while((d=remainder.degree()) >= rhsd)
|
||||
{
|
||||
unsigned int pos = d-rhsd;
|
||||
r.set(pos);
|
||||
remainder -= (rhs<<pos);
|
||||
remainder -= rhs<<pos;
|
||||
}
|
||||
|
||||
remainder.resize(rhs.size(),true);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
10
bitvector.h
10
bitvector.h
@ -83,13 +83,17 @@ public:
|
||||
bitvector operator^(const bitvector &rhs) const {return bitvector(*this) ^= rhs;};
|
||||
bitvector operator+(const bitvector &rhs) const {return *this ^ rhs;}; //addition modulo 2
|
||||
bitvector operator-(const bitvector &rhs) const {return *this ^ rhs;}; //subtraction modulo 2
|
||||
bitvector operator*(const bitvector &rhs) const; //multiplication of polynomials over GF(2) NOTE: naive algorithm, does not employ CLMUL nor fft-like approach, only for short vectors!!!
|
||||
bitvector multiply(const bitvector &rhs, bool autoresize=true) const; //use autoresize=false only if you know it will not overflow!
|
||||
bitvector operator*(const bitvector &rhs) const {return multiply(rhs,true);} //multiplication of polynomials over GF(2) NOTE: naive algorithm, does not employ CLMUL nor fft-like approach, only for short vectors!!!
|
||||
bitvector field_mult(const bitvector &rhs, const bitvector &irpolynom) const; //multiplication in GF(2^n)
|
||||
bitvector field_inv(const bitvector &irpolynom) const; //multiplication in GF(2^n)
|
||||
bitvector field_div(const bitvector &rhs, const bitvector &irpolynom) const {return field_mult(rhs.field_inv(irpolynom),irpolynom);};
|
||||
bitvector division(const bitvector &rhs, bitvector &remainder) const;
|
||||
bitvector operator/(const bitvector &rhs) const {bitvector rem(rhs.size()); return division(rhs,rem);};
|
||||
bitvector operator%(const bitvector &rhs) const {bitvector rem(rhs.size()); division(rhs,rem); return rem;};
|
||||
bitvector gcd(const bitvector &rhs) const;
|
||||
bitvector gcd(const bitvector &rhs) const; //as a polynomial over GF2
|
||||
bitvector lcm(const bitvector &rhs) const {return (*this)*rhs/this->gcd(rhs);};
|
||||
unsigned int bitdiff(const bitvector &y) const; //number of differing bits
|
||||
unsigned int bitdiff(const bitvector &y) const; //number of differing bits (Hamming distance)
|
||||
unsigned int population(const unsigned int before=0) const; //number of 1's
|
||||
unsigned int nlz() const; //number of leading zeroes
|
||||
unsigned int degree() const {if(iszero()) return 0; else return size()-nlz()-1;}; //interprested as a polynomial over GF(2)
|
||||
|
14
t.cc
14
t.cc
@ -2939,11 +2939,23 @@ if(!(u%g).is_zero()) laerror("error in gcd");
|
||||
if(!(v%g).is_zero()) laerror("error in gcd");
|
||||
}
|
||||
|
||||
if(1)
|
||||
if(0)
|
||||
{
|
||||
uint64_t n;
|
||||
cin >>n;
|
||||
cout <<factorization(n)<<" phi = "<<eulerphi(n)<<endl;
|
||||
}
|
||||
|
||||
if(1)
|
||||
{
|
||||
bitvector ir; cin >>ir;
|
||||
bitvector a; cin >>a;
|
||||
bitvector ai = a.field_inv(ir);
|
||||
cout<< "inverse = "<<ai<<endl;
|
||||
cout<<"check1 " <<(a*ai)%ir<<endl;
|
||||
cout<<"check2 " <<a.field_mult(ai,ir)<<endl;
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user