*** empty log message ***

This commit is contained in:
jiri
2020-01-04 20:28:03 +00:00
parent 3b469ad619
commit 2ab28bb5e8
4 changed files with 366 additions and 50 deletions

View File

@@ -43,14 +43,14 @@ public:
//compiler generates default copy constructor and assignment operator
//formal indexing
const T operator[](const int i) const {return this->q[i];};
T& operator[](const int i) {return this->q[i];};
inline const T operator[](const int i) const {return q[i];};
inline T& operator[](const int i) {return q[i];};
//operations of quaternions with scalars
Quaternion& operator=(const T x) {q[0]=x; memset(&q[1],0,3*sizeof(T)); return *this;}; //quaternion from real
Quaternion& operator+=(const T rhs) {this->q[0]+=rhs; return *this;};
Quaternion& operator-=(const T rhs) {this->q[0]-=rhs; return *this;};
Quaternion& operator*=(const T rhs) {this->q[0]*=rhs; this->q[1]*=rhs; this->q[2]*=rhs; this->q[3]*=rhs; return *this;};
Quaternion& operator+=(const T rhs) {q[0]+=rhs; return *this;};
Quaternion& operator-=(const T rhs) {q[0]-=rhs; return *this;};
Quaternion& operator*=(const T rhs) {q[0]*=rhs; q[1]*=rhs; q[2]*=rhs; q[3]*=rhs; return *this;};
Quaternion& operator/=(const T rhs) {return *this *= ((T)1/rhs);};
const Quaternion operator+(const T rhs) const {return Quaternion(*this) += rhs;};
const Quaternion operator-(const T rhs) const {return Quaternion(*this) -= rhs;};
@@ -59,20 +59,27 @@ public:
//quaternion algebra
const Quaternion operator-() const {Quaternion r(*this); r.q[0]= -r.q[0]; r.q[1]= -r.q[1]; r.q[2]= -r.q[2]; r.q[3]= -r.q[3]; return r;}; //unary minus
Quaternion& operator+=(const Quaternion &rhs) {this->q[0]+=rhs.q[0];this->q[1]+=rhs.q[1];this->q[2]+=rhs.q[2];this->q[3]+=rhs.q[3]; return *this;};
Quaternion& operator-=(const Quaternion &rhs) {this->q[0]-=rhs.q[0];this->q[1]-=rhs.q[1];this->q[2]-=rhs.q[2];this->q[3]-=rhs.q[3]; return *this;};
Quaternion& operator+=(const Quaternion &rhs) {q[0]+=rhs.q[0];q[1]+=rhs.q[1];q[2]+=rhs.q[2];q[3]+=rhs.q[3]; return *this;};
Quaternion& operator-=(const Quaternion &rhs) {q[0]-=rhs.q[0];q[1]-=rhs.q[1];q[2]-=rhs.q[2];q[3]-=rhs.q[3]; return *this;};
const Quaternion operator+(const Quaternion &rhs) const {return Quaternion(*this) += rhs;};
const Quaternion operator-(const Quaternion &rhs) const {return Quaternion(*this) -= rhs;};
const Quaternion operator*(const Quaternion &rhs) const;
Quaternion& conjugateme(void) {q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; return *this;}
Quaternion conjugate(void) const {return Quaternion(*this).conjugateme();}
T normsqr(void) const {return q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];};
T norm(void) const {return sqrt(this->normsqr());};
Quaternion& normalize(bool unique_sign=false) {*this /= this->norm(); if(unique_sign && q[0]<0) *this *= (T)-1; return *this;};
Quaternion inverse(void) const {return Quaternion(*this).conjugateme()/this->normsqr();};
T dot(const Quaternion &rhs) const {return q[0]*rhs.q[0] + q[1]*rhs.q[1] + q[2]*rhs.q[2] + q[3]*rhs.q[3];};
T normsqr(void) const {return dot(*this);};
T norm(void) const {return sqrt(normsqr());};
Quaternion& normalize(bool unique_sign=false) {*this /= norm(); if(unique_sign && q[0]<0) *this *= (T)-1; return *this;};
Quaternion inverse(void) const {return Quaternion(*this).conjugateme()/normsqr();};
const Quaternion operator/(const Quaternion &rhs) const {return *this * rhs.inverse();};
Quaternion rotateby(const Quaternion &rhs); //conjugation-rotation of this by NORMALIZED rhs
void rotate(T *to, const T *from) const; //rotate xyz vector by NORMALIZED *this
void rotate(T *to, const T *from, Quaternion<T> *grad=NULL) const; //rotate xyz vector by NORMALIZED *this
Quaternion rotate_match(T *to, const T *from, const T *match) const; //gradient of quaternion rotation which should match a given vector by rotating the from vector
//some conversions
void normquat2euler(T *) const; //"euler" or Tait-Bryan angles [corresponding to meul -r -T xyz -d -t -R]
void axis2normquat(const T *axis, const T &angle);
void normquat2axis(T *axis, T &angle) const;
};
@@ -97,27 +104,40 @@ return s;
}
//"euler" or Tait-Bryan angles [corresponding to meul -r -T xyz -d -t -R]
template<typename T>
void normquat2euler(const Quaternion<T> &q, T *);
//the following must be in .h due to the generic M type which is unspecified and can be any type providing [][], either plain C matrix or std::matrix or LA matrix
//the following must be in .h due to the generic M type which is unspecified and can be any type providing [][], either plain C matrix, Mat3 class, or std::matrix or LA matrix NRMat
//conversion between quanternions and rotation matrices
//
template<typename T, typename M>
void normquat2rotmat(const Quaternion<T> &q, M &a)
{
a[0][0] = 2*q[0]*q[0]-1+2*q[1]*q[1];
a[0][1] = 2*(q[1]*q[2]+q[0]*q[3]);
a[0][2] = 2*(q[1]*q[3]-q[0]*q[2]);
a[1][0] = 2*(q[1]*q[2]-q[0]*q[3]);
a[1][1] = 2*q[0]*q[0]-1+2*q[2]*q[2];
a[1][2] = 2*(q[2]*q[3]+q[0]*q[1]);
a[2][0] = 2*(q[1]*q[3]+q[0]*q[2]);
a[2][1] = 2*(q[2]*q[3]-q[0]*q[1]);
a[2][2] = 2*q[0]*q[0]-1+2*q[3]*q[3];
//some explicit common subexpression optimizations
{
T q00= q[0]*q[0];
T q11= q[1]*q[1];
T q22= q[2]*q[2];
T q33= q[3]*q[3];
a[0][0] = q00+q11-q22-q33;
a[1][1] = q00+q22-q11-q33;
a[2][2] = q00+q33-q11-q22;
}
T q01= q[0]*q[1];
T q02= q[0]*q[2];
T q03= q[0]*q[3];
T q12= q[1]*q[2];
T q13= q[1]*q[3];
T q23= q[2]*q[3];
a[0][1] = 2*(q12+q03);
a[0][2] = 2*(q13-q02);
a[1][0] = 2*(q12-q03);
a[1][2] = 2*(q23+q01);
a[2][0] = 2*(q13+q02);
a[2][1] = 2*(q23-q01);
}
template<typename T, typename M>
@@ -127,6 +147,57 @@ if(!already_normalized) q.normalize();
normquat2rotmat(q,a);
}
//derivative of the rotation matrix by quaternion elements
template<typename T, typename M>
void normquat2rotmatder(const Quaternion<T> &q, Quaternion<M> &a)
{
//some explicit common subexpression optimizations
T q0= q[0]+q[0];
T q1= q[1]+q[1];
T q2= q[2]+q[2];
T q3= q[3]+q[3];
a[0][0][0]= q0;
a[0][0][1]= q3;
a[0][0][2]= -q2;
a[0][1][0]= -q3;
a[0][1][1]= q0;
a[0][1][2]= q1;
a[0][2][0]= q2;
a[0][2][1]= -q1;
a[0][2][2]= q0;
a[1][0][0]= q1;
a[1][0][1]= q2;
a[1][0][2]= q3;
a[1][1][0]= q2;
a[1][1][1]= -q1;
a[1][1][2]= q0;
a[1][2][0]= q3;
a[1][2][1]= -q0;
a[1][2][2]= -q1;
a[2][0][0]= -q2;
a[2][0][1]= q1;
a[2][0][2]= -q0;
a[2][1][0]= q1;
a[2][1][1]= q2;
a[2][1][2]= q3;
a[2][2][0]= q0;
a[2][2][1]= q3;
a[2][2][2]= -q2;
a[3][0][0]= -q3;
a[3][0][1]= q0;
a[3][0][2]= q1;
a[3][1][0]= -q0;
a[3][1][1]= -q3;
a[3][1][2]= q2;
a[3][2][0]= q1;
a[3][2][1]= q2;
a[3][2][2]= q3;
}
//normalized quaternion from rotation matrix
//convention compatible with the paper on MEMS sensors by Sebastian O.H. Madgwick
@@ -165,14 +236,6 @@ if(a[0][1]-a[1][0]<0) q[3] = -q[3];
}
//rotation about unit vector axis (given by pointer for simplicity) through an angle to a normalized quaternion
#ifndef AVOID_GONIOM_FUNC
template<typename T>
void axis2normquat(const T *axis, const T &angle, Quaternion<T> &q);
template<typename T>
void normquat2axis(const Quaternion<T> &q, T *axis, T &angle);
#endif