continueing on polynomials, fix of NRVec unary minus

This commit is contained in:
2021-06-10 17:44:54 +02:00
parent e8ca6b583e
commit 30861fdac6
5 changed files with 132 additions and 16 deletions

View File

@@ -29,6 +29,7 @@ template <typename T>
class Polynomial : public NRVec<T> {
public:
Polynomial(): NRVec<T>() {};
Polynomial(const NRVec<T> &v) : NRVec<T>(v) {}; //allow implicit conversion from NRVec
Polynomial(const int n) : NRVec<T>(n+1) {};
Polynomial(const T &a, const int n) : NRVec<T>(n+1) {NRVec<T>::clear(); (*this)[0]=a;};
@@ -39,13 +40,16 @@ public:
Polynomial& operator-=(const T &a) {NOT_GPU(*this); NRVec<T>::copyonwrite(); (*this)[0]-=a; return *this;}
Polynomial operator+(const T &a) const {return Polynomial(*this) += a;};
Polynomial operator-(const T &a) const {return Polynomial(*this) -= a;};
//operator *= and * by a scalar inherited
//unary- inherited
Polynomial operator-() const {return NRVec<T>::operator-();}
Polynomial operator*(const T &a) const {return NRVec<T>::operator*(a);}
Polynomial operator/(const T &a) const {return NRVec<T>::operator/(a);}
Polynomial& operator*=(const T &a) {NRVec<T>::operator*=(a); return *this;}
Polynomial& operator/=(const T &a) {NRVec<T>::operator/=(a); return *this;}
Polynomial& operator+=(const Polynomial &rhs)
{
NOT_GPU(*this); NRVec<T>::copyonwrite();
if(rhs.degree()>degree()) resize(rhs.degree());
if(rhs.degree()>degree()) resize(rhs.degree(),true);
for(int i=0; i<=rhs.degree(); ++i) (*this)[i] += rhs[i];
return *this;
}
@@ -53,7 +57,7 @@ public:
Polynomial& operator-=(const Polynomial &rhs)
{
NOT_GPU(*this); NRVec<T>::copyonwrite();
if(rhs.degree()>degree()) resize(rhs.degree());
if(rhs.degree()>degree()) resize(rhs.degree(),true);
for(int i=0; i<=rhs.degree(); ++i) (*this)[i] -= rhs[i];
return *this;
}
@@ -61,16 +65,69 @@ public:
Polynomial operator-(const Polynomial &rhs) const {return Polynomial(*this) -= rhs;};
Polynomial operator*(const Polynomial &rhs) const //for very long polynomials FFT should be used
{
NOT_GPU(*this);
Polynomial r(degree()+rhs.degree());
r.clear();
for(int i=0; i<=rhs.degree(); ++i) for(int j=0; j<=degree(); ++j) r[i+j] += rhs[i]*(*this)[j];
return r;
};
void simplify(const typename LA_traits<T>::normtype thr)
{
NOT_GPU(*this);
int n=degree();
while(n>0 && abs((*this)[n])<thr) --n;
resize(n,true);
};
Polynomial shifted(const int shift) const
{
if(shift==0) return *this;
if(shift>0)
{
Polynomial r(degree()+shift);
for(int i=0; i<shift; ++i) r[i]=0;
for(int i=0; i<=degree(); ++i) r[shift+i] = (*this)[i];
return r;
}
else
{
if(shift+degree()<0)
{
Polynomial r(0);
r[0]=0;
return r;
}
Polynomial r(shift+degree());
for(int i= -shift; i<=degree(); ++i) r[shift+i] = (*this)[i];
return r;
}
}
Polynomial derivative() const
{
NOT_GPU(*this);
int n=degree();
if(n==0)
{
Polynomial r(0);
r[0]=0;
return r;
}
Polynomial r(n-1);
for(int i=1; i<=n; ++i) r[i-1] = (*this)[i]* ((T)i);
return r;
};
Polynomial integral() const
{
NOT_GPU(*this);
int n=degree();
Polynomial r(n+1);
r[0]=0;
for(int i=0; i<=n; ++i) r[i+1] = (*this)[i]/((T)(i+1));
return r;
}
void polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const;
Polynomial operator/(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return q;};
Polynomial operator%(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return r;};
//@@@@
//simplify(threshold)
//derivative,integral
//division remainder
//gcd, lcm
//roots, interpolation ... special only for real->complex - declare only and implent only template specialization in .cc