continueing on polynomials, fix of NRVec unary minus
This commit is contained in:
parent
e8ca6b583e
commit
30861fdac6
@ -23,19 +23,49 @@
|
||||
|
||||
namespace LA {
|
||||
|
||||
template <typename T>
|
||||
void Polynomial<T>::polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const
|
||||
{
|
||||
if(rhs[rhs.degree()]==0) laerror("division by a polynomial with zero leading coefficient - simplify it first");
|
||||
if(rhs.degree()==0) //scalar division
|
||||
{
|
||||
q= *this/rhs[0];
|
||||
r.resize(0,false);
|
||||
r[0]=0;
|
||||
return;
|
||||
}
|
||||
int rdegree= rhs.degree();
|
||||
int qdegree= degree()-rdegree;
|
||||
if(qdegree<0)
|
||||
{
|
||||
q.resize(0,false);
|
||||
q[0]=0;
|
||||
r= *this;
|
||||
return;
|
||||
}
|
||||
//general case
|
||||
q.resize(qdegree,false);
|
||||
r= *this; r.copyonwrite();
|
||||
for(int i=degree(); i>=rdegree; --i)
|
||||
{
|
||||
T tmp= r[i]/rhs[rdegree];
|
||||
q[i-rdegree]= tmp;
|
||||
r -= rhs.shifted(i-rdegree)*tmp;
|
||||
}
|
||||
r.resize(rhs.degree()-1,true);
|
||||
}
|
||||
|
||||
|
||||
/***************************************************************************//**
|
||||
* forced instantization in the corresponding object file
|
||||
******************************************************************************/
|
||||
template class Polynomial<int>;
|
||||
template class Polynomial<float>;
|
||||
template class Polynomial<double>;
|
||||
template class Polynomial<std::complex<double> >;
|
||||
|
||||
#define INSTANTIZE(T) \
|
||||
|
||||
|
||||
//INSTANTIZE(float)
|
||||
|
||||
//INSTANTIZE(double)
|
||||
|
||||
|
73
polynomial.h
73
polynomial.h
@ -29,6 +29,7 @@ template <typename T>
|
||||
class Polynomial : public NRVec<T> {
|
||||
public:
|
||||
Polynomial(): NRVec<T>() {};
|
||||
Polynomial(const NRVec<T> &v) : NRVec<T>(v) {}; //allow implicit conversion from NRVec
|
||||
Polynomial(const int n) : NRVec<T>(n+1) {};
|
||||
Polynomial(const T &a, const int n) : NRVec<T>(n+1) {NRVec<T>::clear(); (*this)[0]=a;};
|
||||
|
||||
@ -39,13 +40,16 @@ public:
|
||||
Polynomial& operator-=(const T &a) {NOT_GPU(*this); NRVec<T>::copyonwrite(); (*this)[0]-=a; return *this;}
|
||||
Polynomial operator+(const T &a) const {return Polynomial(*this) += a;};
|
||||
Polynomial operator-(const T &a) const {return Polynomial(*this) -= a;};
|
||||
//operator *= and * by a scalar inherited
|
||||
//unary- inherited
|
||||
Polynomial operator-() const {return NRVec<T>::operator-();}
|
||||
Polynomial operator*(const T &a) const {return NRVec<T>::operator*(a);}
|
||||
Polynomial operator/(const T &a) const {return NRVec<T>::operator/(a);}
|
||||
Polynomial& operator*=(const T &a) {NRVec<T>::operator*=(a); return *this;}
|
||||
Polynomial& operator/=(const T &a) {NRVec<T>::operator/=(a); return *this;}
|
||||
|
||||
Polynomial& operator+=(const Polynomial &rhs)
|
||||
{
|
||||
NOT_GPU(*this); NRVec<T>::copyonwrite();
|
||||
if(rhs.degree()>degree()) resize(rhs.degree());
|
||||
if(rhs.degree()>degree()) resize(rhs.degree(),true);
|
||||
for(int i=0; i<=rhs.degree(); ++i) (*this)[i] += rhs[i];
|
||||
return *this;
|
||||
}
|
||||
@ -53,7 +57,7 @@ public:
|
||||
Polynomial& operator-=(const Polynomial &rhs)
|
||||
{
|
||||
NOT_GPU(*this); NRVec<T>::copyonwrite();
|
||||
if(rhs.degree()>degree()) resize(rhs.degree());
|
||||
if(rhs.degree()>degree()) resize(rhs.degree(),true);
|
||||
for(int i=0; i<=rhs.degree(); ++i) (*this)[i] -= rhs[i];
|
||||
return *this;
|
||||
}
|
||||
@ -61,16 +65,69 @@ public:
|
||||
Polynomial operator-(const Polynomial &rhs) const {return Polynomial(*this) -= rhs;};
|
||||
Polynomial operator*(const Polynomial &rhs) const //for very long polynomials FFT should be used
|
||||
{
|
||||
NOT_GPU(*this);
|
||||
Polynomial r(degree()+rhs.degree());
|
||||
r.clear();
|
||||
for(int i=0; i<=rhs.degree(); ++i) for(int j=0; j<=degree(); ++j) r[i+j] += rhs[i]*(*this)[j];
|
||||
return r;
|
||||
};
|
||||
void simplify(const typename LA_traits<T>::normtype thr)
|
||||
{
|
||||
NOT_GPU(*this);
|
||||
int n=degree();
|
||||
while(n>0 && abs((*this)[n])<thr) --n;
|
||||
resize(n,true);
|
||||
};
|
||||
Polynomial shifted(const int shift) const
|
||||
{
|
||||
if(shift==0) return *this;
|
||||
if(shift>0)
|
||||
{
|
||||
Polynomial r(degree()+shift);
|
||||
for(int i=0; i<shift; ++i) r[i]=0;
|
||||
for(int i=0; i<=degree(); ++i) r[shift+i] = (*this)[i];
|
||||
return r;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(shift+degree()<0)
|
||||
{
|
||||
Polynomial r(0);
|
||||
r[0]=0;
|
||||
return r;
|
||||
}
|
||||
Polynomial r(shift+degree());
|
||||
for(int i= -shift; i<=degree(); ++i) r[shift+i] = (*this)[i];
|
||||
return r;
|
||||
}
|
||||
}
|
||||
Polynomial derivative() const
|
||||
{
|
||||
NOT_GPU(*this);
|
||||
int n=degree();
|
||||
if(n==0)
|
||||
{
|
||||
Polynomial r(0);
|
||||
r[0]=0;
|
||||
return r;
|
||||
}
|
||||
Polynomial r(n-1);
|
||||
for(int i=1; i<=n; ++i) r[i-1] = (*this)[i]* ((T)i);
|
||||
return r;
|
||||
};
|
||||
Polynomial integral() const
|
||||
{
|
||||
NOT_GPU(*this);
|
||||
int n=degree();
|
||||
Polynomial r(n+1);
|
||||
r[0]=0;
|
||||
for(int i=0; i<=n; ++i) r[i+1] = (*this)[i]/((T)(i+1));
|
||||
return r;
|
||||
}
|
||||
void polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const;
|
||||
Polynomial operator/(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return q;};
|
||||
Polynomial operator%(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return r;};
|
||||
|
||||
//@@@@
|
||||
//simplify(threshold)
|
||||
//derivative,integral
|
||||
//division remainder
|
||||
//gcd, lcm
|
||||
//roots, interpolation ... special only for real->complex - declare only and implent only template specialization in .cc
|
||||
|
||||
|
10
t.cc
10
t.cc
@ -2172,23 +2172,33 @@ if(1)
|
||||
int n,m;
|
||||
double x;
|
||||
cin >>n >>m >>x;
|
||||
if(n<m) {int t=n; n=m; m=t;}
|
||||
Polynomial<double> p(n),q(m);
|
||||
p.randomize(1.);
|
||||
q.randomize(1.);
|
||||
NRVec<double> qq(q);
|
||||
Polynomial<double> qqq(qq);
|
||||
Polynomial<double> pp(n); pp.randomize(1.);
|
||||
p*=10.;
|
||||
Polynomial<double> a,b;
|
||||
p.polydiv(q,a,b);
|
||||
Polynomial<double> r=p*q;
|
||||
Polynomial<double> z=value(p,q); //p(q(x))
|
||||
Polynomial<double> y=value(q,p);
|
||||
cout <<p;
|
||||
cout <<q;
|
||||
cout <<a;
|
||||
cout <<b;
|
||||
cout <<r;
|
||||
cout <<z;
|
||||
cout << "polydiv test "<<(a*q+b -p).norm()<<endl;
|
||||
cout << value(p,x)*value(q,x) -value(r,x)<<endl;
|
||||
cout << value(p,value(q,x)) -value(z,x)<<endl;
|
||||
cout << value(q,value(p,x)) -value(y,x)<<endl;
|
||||
NRMat<double> u(5,5);
|
||||
u.randomize(1.);
|
||||
cout << (value(p,u)*value(q,u) -value(r,u)).norm()<<endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
8
vec.cc
8
vec.cc
@ -153,10 +153,10 @@ const NRVec<double> NRVec<double>::operator-() const {
|
||||
#ifdef CUDALA
|
||||
if(location == cpu){
|
||||
#endif
|
||||
cblas_dscal(nn, -1.0, v, 1);
|
||||
cblas_dscal(nn, -1.0, result.v, 1);
|
||||
#ifdef CUDALA
|
||||
}else{
|
||||
cublasDscal(nn, -1.0, v, 1);
|
||||
cublasDscal(nn, -1.0, result.v, 1);
|
||||
TEST_CUBLAS("cublasDscal");
|
||||
}
|
||||
#endif
|
||||
@ -174,10 +174,10 @@ const NRVec<std::complex<double> > NRVec<std::complex<double> >::operator-() con
|
||||
#ifdef CUDALA
|
||||
if(location == cpu){
|
||||
#endif
|
||||
cblas_zdscal(nn, -1.0, v, 1);
|
||||
cblas_zdscal(nn, -1.0, result.v, 1);
|
||||
#ifdef CUDALA
|
||||
}else{
|
||||
cublasZdscal(nn, -1.0, (cuDoubleComplex*)v, 1);
|
||||
cublasZdscal(nn, -1.0, (cuDoubleComplex*)result.v, 1);
|
||||
TEST_CUBLAS("cublasZdscal");
|
||||
}
|
||||
#endif
|
||||
|
23
vec.h
23
vec.h
@ -193,10 +193,12 @@ public:
|
||||
inline NRVec& operator+=(const T &a);
|
||||
inline NRVec& operator-=(const T &a);
|
||||
inline NRVec& operator*=(const T &a);
|
||||
inline NRVec& operator/=(const T &a);
|
||||
|
||||
inline const NRVec operator+(const T &a) const;
|
||||
inline const NRVec operator-(const T &a) const;
|
||||
inline const NRVec operator*(const T &a) const;
|
||||
inline const NRVec operator/(const T &a) const;
|
||||
|
||||
|
||||
//! determine the actual value of the reference counter
|
||||
@ -753,6 +755,16 @@ inline NRVec<T> & NRVec<T>::operator*=(const T &a) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline NRVec<T> & NRVec<T>::operator/=(const T &a) {
|
||||
NOT_GPU(*this);
|
||||
copyonwrite();
|
||||
|
||||
for(register int i=0; i<nn; ++i) v[i] /= a;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
/***************************************************************************//**
|
||||
* compute scalar product \f$d\f$ of this vector \f$\vec{x}\f$ of general type <code>T</code>
|
||||
* with given vector \f$\vec{y}\f$ of type <code>T</code> and order \f$N\f$
|
||||
@ -858,6 +870,7 @@ inline const NRVec<T> NRVec<T>::unitvector() const {
|
||||
NRVECMAT_OPER(Vec,+)
|
||||
NRVECMAT_OPER(Vec,-)
|
||||
NRVECMAT_OPER(Vec,*)
|
||||
NRVECMAT_OPER(Vec,/)
|
||||
|
||||
/***************************************************************************//**
|
||||
* generate operators involving vector and vector
|
||||
@ -1035,13 +1048,13 @@ nn = n;
|
||||
if(location == cpu)
|
||||
{
|
||||
#endif
|
||||
if(preserve) {vold=v; do_delete=true;} else delete[] v;
|
||||
if(preserve) {vold=v; preserved= do_delete=true;} else delete[] v;
|
||||
v = new T[nn];
|
||||
#ifdef CUDALA
|
||||
}
|
||||
else
|
||||
{
|
||||
if(preserve) {vold=v; do_delete=true;} else gpufree(v);
|
||||
if(preserve) {vold=v; d preserved= o_delete=true;} else gpufree(v);
|
||||
v = (T*) gpualloc(nn*sizeof(T));
|
||||
}
|
||||
#endif
|
||||
@ -1374,6 +1387,9 @@ inline NRVec<double>& NRVec<double>::operator*=(const double &a) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline NRVec<double>& NRVec<double>::operator/=(const double &a) {return *this *= (1./a);}
|
||||
|
||||
/***************************************************************************//**
|
||||
* multiplies this complex vector \f$\vec{x}\f$ by a complex scalar value \f$\alpha\f$
|
||||
* \f[\vec{x}_i\leftarrow\alpha\vec{x}_i\f]
|
||||
@ -1397,6 +1413,9 @@ inline NRVec<std::complex<double> >& NRVec<std::complex<double> >::operator*=(co
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline NRVec<std::complex<double> >& NRVec<std::complex<double> >::operator/=(const std::complex<double> &a) {return *this *= (1./a);}
|
||||
|
||||
/***************************************************************************//**
|
||||
* computes the inner product of this real vector \f$\vec{x}\f$ with given real vector \f$\vec{y]\f$
|
||||
* @param[in] rhs real vector \f$\vec{y}\f$
|
||||
|
Loading…
Reference in New Issue
Block a user