*** empty log message ***

This commit is contained in:
jiri 2005-09-04 19:34:10 +00:00
parent a00860dda2
commit 313b043d16
2 changed files with 42 additions and 6 deletions

View File

@ -1,7 +1,12 @@
#ifndef NONCBLAS
extern "C" {
#include "atlas_enum.h"
#include "clapack.h"
}
#else
#include "noncblas.h"
#endif
#include "vec.h"
#include "smat.h"
#include "mat.h"
@ -157,7 +162,6 @@ extern "C" void FORNAME(dspsv)(const char *UPLO, const int *N, const int *NRHS,
static void linear_solve_do(NRSMat<double> &a, double *b, const int nrhs, const int ldb, double *det, int n)
{
int r, *ipiv;
if (det) cerr << "@@@ sign of the determinant not implemented correctly yet\n";
a.copyonwrite();
ipiv = new int[n];
char U = 'U';
@ -169,8 +173,7 @@ static void linear_solve_do(NRSMat<double> &a, double *b, const int nrhs, const
if (det && r >= 0) {
*det = a(0,0);
for (int i=1; i<n; i++) *det *= a(i,i);
for (int i=0; i<n; i++)
if (ipiv[i] != i) *det = -(*det);
//do not use ipiv, since the permutation matrix occurs twice in the decomposition and signs thus cancel (man dspsv)
}
delete[] ipiv;
if (r > 0 && b) laerror("singular matrix in linear_solve(SMat&, Mat*, double*");

View File

@ -66,11 +66,12 @@ declare_la(complex<double>)
// Separate declarations
//general nonsymmetric matrix and generalized diagonalization
extern void gdiagonalize(NRMat<double> &a, NRVec<double> &wr, NRVec<double> &wi,
NRMat<double> *vl, NRMat<double> *vr, const bool corder=1, int n=0,
NRMat<double> *vl, NRMat<double> *vr, const bool corder=1, int n=0, const int sorttype=0, const bool biorthonormalize=0,
NRMat<double> *b=NULL, NRVec<double> *beta=NULL);
extern void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
NRMat< complex<double> >*vl, NRMat< complex<double> > *vr,
const bool corder=1, int n=0, NRMat<double> *b=NULL, NRVec<double> *beta=NULL);
const bool corder=1, int n=0, const int sorttype=0, const bool biorthonormalize=0,
NRMat<double> *b=NULL, NRVec<double> *beta=NULL);
extern NRMat<double> matrixfunction(NRSMat<double> a, double (*f) (double));
extern NRMat<double> matrixfunction(NRMat<double> a, complex<double> (*f)(const complex<double> &),const bool adjust=0);
@ -100,7 +101,7 @@ const NRMat<T> inverse(NRMat<T> a, T *det=0)
//general determinant
template<class MAT>
const typename LA_traits<MAT>::elementtype determinant(MAT a)//again passed by value
const typename LA_traits<MAT>::elementtype determinant(MAT a)//passed by value
{
typename LA_traits<MAT>::elementtype det;
if(a.nrows()!=a.ncols()) laerror("determinant of non-square matrix");
@ -108,6 +109,38 @@ linear_solve(a,NULL,&det);
return det;
}
//general determinant destructive on input
template<class MAT>
const typename LA_traits<MAT>::elementtype determinant_destroy(MAT &a) //passed by reference
{
typename LA_traits<MAT>::elementtype det;
if(a.nrows()!=a.ncols()) laerror("determinant of non-square matrix");
linear_solve(a,NULL,&det);
return det;
}
//general submatrix
template<class MAT, class INDEX>
const NRMat<typename LA_traits<MAT>::elementtype> submatrix(const MAT a, const INDEX rows, const INDEX cols, int indexshift=0, bool ignoresign=false)
{
NRMat<typename LA_traits<MAT>::elementtype> r(rows.size(),cols.size());
if(ignoresign)
{
for(int i=0; i<rows.size(); ++i)
for(j=0; j<cols.size(); ++j)
r(i,j) = a(abs(rows[i])+indexshift,abs(cols[j])+indexshift);
}
else
{
for(int i=0; i<rows.size(); ++i)
for(j=0; j<cols.size(); ++j)
r(i,j) = a(rows[i]+indexshift,cols[j]+indexshift);
}
return r;
}
//auxiliary routine to adjust eigenvectors to guarantee real logarithm
extern void adjustphases(NRMat<double> &v);