*** empty log message ***

This commit is contained in:
jiri 2020-01-04 17:55:58 +00:00
parent 2cb9b28ee3
commit 3b469ad619

89
vecmat3.h Normal file
View File

@ -0,0 +1,89 @@
/*
LA: linear algebra C++ interface library
Copyright (C) 2008-2020 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//this header defines simple classes for 3-dimensional vectors and matrices to describe rotations etc.
//the class is compatible with functions in quaternion.h used for SO(3) parametrization
//it should be compilable separately from LA as well as being a part of LA
#ifndef _VECMAT3_H_
#define _VECMAT3_H_
#include <stdlib.h>
#include <iostream>
#include <cstring>
#include <math.h>
template <typename T>
class Vec3
{
public:
//just plain old data
T q[3];
//
Vec3(void) {};
Vec3(const T x, const T u=0, const T v=0) {q[0]=x; q[1]=u; q[2]=v;}; //Vec3 from real(s)
explicit Vec3(const T* x) {memcpy(q,x,3*sizeof(T));}
//compiler generates default copy constructor and assignment operator
//formal indexing
const T operator[](const int i) const {return this->q[i];};
T& operator[](const int i) {return this->q[i];};
//operations of Vec3s with scalars
Vec3& operator*=(const T rhs) {this->q[0]*=rhs; this->q[1]*=rhs; this->q[2]*=rhs; return *this;};
Vec3& operator/=(const T rhs) {return *this *= ((T)1/rhs);};
const Vec3 operator*(const T rhs) const {return Vec3(*this) *= rhs;};
const Vec3 operator/(const T rhs) const {return Vec3(*this) /= rhs;};
//Vec3 algebra
const Vec3 operator-() const {Vec3 r(*this); r.q[0]= -r.q[0]; r.q[1]= -r.q[1]; r.q[2]= -r.q[2]; return r;}; //unary minus
Vec3& operator+=(const Vec3 &rhs) {this->q[0]+=rhs.q[0];this->q[1]+=rhs.q[1];this->q[2]+=rhs.q[2]; return *this;};
Vec3& operator-=(const Vec3 &rhs) {this->q[0]-=rhs.q[0];this->q[1]-=rhs.q[1];this->q[2]-=rhs.q[2]; return *this;};
const Vec3 operator+(const Vec3 &rhs) const {return Vec3(*this) += rhs;};
const Vec3 operator-(const Vec3 &rhs) const {return Vec3(*this) -= rhs;};
const Vec3 operator*(const Vec3 &rhs) const {Vec3 x; x[0] = q[1]*rhs.q[2]-q[2]*rhs.q[1]; x[1] = q[2]*rhs.q[0]-q[0]*rhs.q[2]; x[2] = q[0]*rhs.q[1]-q[1]*rhs.q[0]; return x;}; //vector product
T dot(const Vec3 &rhs) const {return q[0]*rhs.q[0] + q[1]*rhs.q[1] + q[2]*rhs.q[2];};
T normsqr(void) const {return dot(*this);};
T norm(void) const {return sqrt(this->normsqr());};
Vec3& normalize(void) {*this /= this->norm(); return *this;};
};
//stream I/O
template <typename T>
std::istream& operator>>(std::istream &s, Vec3<T> &x)
{
s >> x.q[0];
s >> x.q[1];
s >> x.q[2];
return s;
}
template <typename T>
std::ostream& operator<<(std::ostream &s, const Vec3<T> &x) {
s << x.q[0]<<" ";
s << x.q[1]<<" ";
s << x.q[2];
return s;
}
#endif /* _VECMAT3_H_ */