*** empty log message ***

This commit is contained in:
jiri
2011-01-18 14:37:05 +00:00
parent 600b5b3abd
commit 4534c2e56a
21 changed files with 753 additions and 138 deletions

View File

@@ -240,6 +240,41 @@ linear_solve_do(a,&B[0],1,a.nrows(),det,n);
}
// Roman, complex version of linear_solve()
extern "C" void FORNAME(zgesv)(const int *N, const int *NRHS, double *A, const int *LDA,
int *IPIV, double *B, const int *LDB, int *INFO);
void linear_solve(NRMat< complex<double> > &A, NRMat< complex<double> > *B, complex<double> *det, int n)
{
int r, *ipiv;
if (A.nrows() != A.ncols()) laerror("linear_solve() call for non-square matrix");
if (B && A.nrows() != B->ncols()) laerror("incompatible matrices in linear_solve()");
A.copyonwrite();
if (B) B->copyonwrite();
ipiv = new int[A.nrows()];
n = A.nrows();
int nrhs = B ? B->nrows() : 0;
int lda = A.ncols();
int ldb = B ? B->ncols() : A.nrows();
FORNAME(zgesv)(&n, &nrhs, (double *)A[0], &lda, ipiv,
B ? (double *)(*B)[0] : (double *)0, &ldb, &r);
if (r < 0) {
delete[] ipiv;
laerror("illegal argument in lapack_gesv");
}
if (det && r>=0) {
*det = A[0][0];
for (int i=1; i<A.nrows(); ++i) *det *= A[i][i];
//change sign of det by parity of ipiv permutation
for (int i=0; i<A.nrows(); ++i) *det = -(*det);
}
delete [] ipiv;
if (r>0 && B) laerror("singular matrix in zgesv");
}
//other version of linear solver based on gesvx
//------------------------------------------------------------------------------
@@ -793,6 +828,18 @@ extern "C" void FORNAME(dggev)(const char *JOBVL, const char *JOBVR, const FINT
double *VL, const FINT *LDVL, double *VR, const FINT *LDVR,
double *WORK, const FINT *LWORK, FINT *INFO );
extern "C" void FORNAME(zgeev)(const char *JOBVL, const char *JOBVR, const FINT *N,
complex<double> *A, const FINT *LDA, complex<double> *W, complex<double> *VL, const FINT *LDVL,
complex<double> *VR, const FINT *LDVR, complex<double> *WORK, const FINT *LWORK,
double *RWORK, FINT *INFO );
extern "C" void FORNAME(zggev)(const char *JOBVL, const char *JOBVR, const FINT *N,
complex<double> *A, const FINT *LDA, complex<double> *B, const FINT *LDB, complex<double> *W, complex<double> *WBETA,
complex<double> *VL, const FINT *LDVL, complex<double> *VR, const FINT *LDVR,
complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO );
//statics for sorting
static int *gdperm;
@@ -904,11 +951,12 @@ void gdiagonalize(NRMat<double> &a, NRVec<double> &wr, NRVec<double> &wi,
#endif
delete[] work;
//std::cout <<"TEST dgeev\n"<<wr<<wi<<*vr<<*vl<<std::endl;
if (r < 0) laerror("illegal argument in ggev/geev in gdiagonalize()");
if (r > 0) laerror("convergence problem in ggev/geev in gdiagonalize()");
//std::cout <<"TEST dgeev\n"<<wr<<wi<<*vr<<*vl<<std::endl;
if(biorthonormalize && vl && vr)
{
if(b || beta) laerror("@@@ biorthonormalize not implemented yet for generalized non-symmetric eigenproblem");//metric b would be needed
@@ -968,6 +1016,7 @@ void gdiagonalize(NRMat<double> &a, NRVec<double> &wr, NRVec<double> &wi,
}
}
if(sorttype>0)
{
NRVec<int> perm(n);
@@ -997,12 +1046,119 @@ void gdiagonalize(NRMat<double> &a, NRVec<double> &wr, NRVec<double> &wi,
}
//most general complex routine
template<>
void gdiagonalize(NRMat<complex<double> > &a, NRVec< complex<double> > &w,
NRMat< complex<double> >*vl, NRMat< complex<double> > *vr,
const bool corder, int n, const int sorttype, const int biorthonormalize,
NRMat<complex<double> > *b, NRVec<complex<double> > *beta)
{
if(n<=0) n = a.nrows();
if (n > a.ncols() || n>a.nrows() ) laerror("gdiagonalize() call for a non-square matrix");
if (n > w.size())
laerror("inconsistent dimension of eigen vector in gdiagonalize()");
if (vl) if (n > vl->nrows() || n > vl->ncols())
laerror("inconsistent dimension of vl in gdiagonalize()");
if (vr) if (n > vr->nrows() || n > vr->ncols())
laerror("inconsistent dimension of vr in gdiagonalize()");
if (beta) if(n > beta ->size()) laerror("inconsistent dimension of beta in gdiagonalize()");
if(b) if(n > b->nrows() || n > b->ncols())
laerror("inconsistent dimension of b in gdiagonalize()");
if(b && !beta || beta && !b) laerror("missing array for generalized diagonalization");
a.copyonwrite();
w.copyonwrite();
if (vl) vl->copyonwrite();
if (vr) vr->copyonwrite();
if (beta) beta->copyonwrite();
if (b) b->copyonwrite();
char jobvl = vl ? 'V' : 'N';
char jobvr = vr ? 'V' : 'N';
complex<double> work0;
FINT lwork = -1;
FINT r;
FINT lda=a.ncols();
FINT ldb=0;
if(b) ldb=b->ncols();
FINT ldvl= vl?vl->ncols():lda;
FINT ldvr= vr?vr->ncols():lda;
double *rwork = new double[n*(b?8:2)];
#ifdef FORINT
FINT ntmp = n;
if(b) FORNAME(zggev)(&jobvr, &jobvl, &ntmp, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &ntmp, a, &lda, w, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
#else
if(b) FORNAME(zggev)(&jobvr, &jobvl, &n, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &n, a, &lda, w, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
#endif
lwork = (FINT) work0.real();
complex<double> *work = new complex<double>[lwork];
#ifdef FORINT
if(b) FORNAME(zggev)(&jobvr, &jobvl, &ntmp, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &ntmp, a, &lda, w, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
#else
if(b) FORNAME(zggev)(&jobvr, &jobvl, &n, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &n, a, &lda, w, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
#endif
delete[] work;
delete[] rwork;
//std::cout <<"TEST zg(g|e)ev\n"<<w<<*vr<<*vl<<std::endl;
if (r < 0) laerror("illegal argument in ggev/geev in gdiagonalize()");
if (r > 0) laerror("convergence problem in ggev/geev in gdiagonalize()");
if(biorthonormalize && vl && vr)
{
if(b || beta) laerror("@@@ biorthonormalize not implemented yet for generalized non-hermitian eigenproblem");//metric b would be needed
for(int i=0; i<n; ++i)
{
//calculate scaling paramter
complex<double> tmp;
cblas_zdotc_sub(n,(*vr)[i],1,(*vl)[i], 1, &tmp);
tmp = 1./tmp;
std::cout <<"scaling by "<<tmp<<"\n";
if(biorthonormalize==1) cblas_zscal(n,&tmp,(*vl)[i],1);
if(biorthonormalize==2) cblas_zscal(n,&tmp,(*vr)[i],1);
}
}
if(sorttype>0)
{
laerror("sorting not implemented in complex gdiagonalize");
}
if (corder) {
if (vl) vl->transposeme(n);
if (vr) vr->transposeme(n);
}
}
template<>
void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
NRMat< complex<double> >*vl, NRMat< complex<double> > *vr,
const bool corder, int n, const int sorttype, const int biorthonormalize,
NRMat<double> *b, NRVec<double> *beta)
{
if(!corder) laerror("gdiagonalize() corder 0 not implemented");
if(n<=0) n = a.nrows();
if(n> a.nrows() || n == a.nrows() && n != a.ncols()) laerror("gdiagonalize() call for a non-square matrix");
@@ -1020,19 +1176,43 @@ void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
i = 0;
while (i < n) {
if (wi[i] == 0) {
if(corder)
{
if (vl) for (int j=0; j<n; j++) (*vl)[j][i] = (*rvl)[i][j];
if (vr) for (int j=0; j<n; j++) (*vr)[j][i] = (*rvr)[i][j];
}
else
{
if (vl) for (int j=0; j<n; j++) (*vl)[i][j] = (*rvl)[i][j];
if (vr) for (int j=0; j<n; j++) (*vr)[i][j] = (*rvr)[i][j];
}
i++;
} else {
if (vl)
for (int j=0; j<n; j++) {
if(corder)
{
(*vl)[j][i] = complex<double>((*rvl)[i][j], (*rvl)[i+1][j]);
(*vl)[j][i+1] = complex<double>((*rvl)[i][j], -(*rvl)[i+1][j]);
}
else
{
(*vl)[i][j] = complex<double>((*rvl)[i][j], (*rvl)[i+1][j]);
(*vl)[i+1][j] = complex<double>((*rvl)[i][j], -(*rvl)[i+1][j]);
}
}
if (vr)
for (int j=0; j<n; j++) {
if(corder)
{
(*vr)[j][i] = complex<double>((*rvr)[i][j], (*rvr)[i+1][j]);
(*vr)[j][i+1] = complex<double>((*rvr)[i][j], -(*rvr)[i+1][j]);
}
else
{
(*vr)[i][j] = complex<double>((*rvr)[i][j], (*rvr)[i+1][j]);
(*vr)[i+1][j] = complex<double>((*rvr)[i][j], -(*rvr)[i+1][j]);
}
}
i += 2;
}
@@ -1043,35 +1223,78 @@ void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
}
const NRMat<double> realpart(const NRMat< complex<double> > &a)
template<>
const NRMat<double> realpart<NRMat< complex<double> > >(const NRMat< complex<double> > &a)
{
#ifdef CUDALA
if(location == cpu){
#endif
NRMat<double> result(a.nrows(), a.ncols());
cblas_dcopy(a.nrows()*a.ncols(), (const double *)a[0], 2, result, 1);
#ifdef CUDALA
}else{
laerror("not implemented for cuda yet");
}
#endif
return result;
}
const NRMat<double> imagpart(const NRMat< complex<double> > &a)
template<>
const NRMat<double> imagpart<NRMat< complex<double> > >(const NRMat< complex<double> > &a)
{
#ifdef CUDALA
if(location == cpu){
#endif
NRMat<double> result(a.nrows(), a.ncols());
cblas_dcopy(a.nrows()*a.ncols(), (const double *)a[0]+1, 2, result, 1);
#ifdef CUDALA
}else{
laerror("not implemented for cuda yet");
}
#endif
return result;
}
const NRMat< complex<double> > realmatrix (const NRMat<double> &a)
template<>
const NRMat< complex<double> > realmatrix<NRMat<double> > (const NRMat<double> &a)
{
#ifdef CUDALA
if(location == cpu){
#endif
NRMat <complex<double> > result(a.nrows(), a.ncols());
cblas_dcopy(a.nrows()*a.ncols(), a, 1, (double *)result[0], 2);
#ifdef CUDALA
}else{
laerror("not implemented for cuda yet");
}
#endif
return result;
}
const NRMat< complex<double> > imagmatrix (const NRMat<double> &a)
template<>
const NRMat< complex<double> > imagmatrix<NRMat<double> > (const NRMat<double> &a)
{
#ifdef CUDALA
if(location == cpu){
#endif
NRMat< complex<double> > result(a.nrows(), a.ncols());
cblas_dcopy(a.nrows()*a.ncols(), a, 1, (double *)result[0]+1, 2);
#ifdef CUDALA
}else{
laerror("not implemented for cuda yet");
}
#endif
return result;
}
const NRMat< complex<double> > complexmatrix (const NRMat<double> &re, const NRMat<double> &im)
template<>
const NRMat< complex<double> > complexmatrix<NRMat<double> > (const NRMat<double> &re, const NRMat<double> &im)
{
if(re.nrows()!=im.nrows() || re.ncols() != im.ncols()) laerror("incompatible sizes of real and imaginary parts");
NRMat< complex<double> > result(re.nrows(), re.ncols());
@@ -1080,57 +1303,60 @@ const NRMat< complex<double> > complexmatrix (const NRMat<double> &re, const NRM
return result;
}
template<>
const SparseSMat< complex<double> > complexmatrix<SparseSMat<double> >(const SparseSMat<double> &re, const SparseSMat<double> &im) {
if(re.nrows()!=im.nrows() || re.ncols() != im.ncols()) laerror("incompatible sizes of real and imaginary parts");
SparseSMat< complex<double> > result(re.nrows(),re.ncols());
complex<double> tmp;
SparseSMat<double>::iterator pre(re);
for(; pre.notend(); ++pre) {
tmp = pre->elem;
result.add(pre->row,pre->col,tmp,false);
}
NRMat<double> matrixfunction(NRMat<double> a, complex<double>
(*f)(const complex<double> &), const bool adjust)
{
int n = a.nrows();
NRMat< complex<double> > u(n, n), v(n, n);
NRVec< complex<double> > w(n);
/*
NRMat<complex<double> > a0=complexify(a);
*/
gdiagonalize(a, w, &u, &v);//a gets destroyed, eigenvectors are rows
NRVec< complex<double> > z = diagofproduct(u, v, 1, 1);
/*
std::cout <<"TEST matrixfunction\n"<<w<<u<<v<<z;
std::cout <<"TEST matrixfunction1 "<< u*a0 - diagonalmatrix(w)*u<<std::endl;
std::cout <<"TEST matrixfunction2 "<< a0*v.transpose(1) - v.transpose(1)*diagonalmatrix(w)<<std::endl;
std::cout <<"TEST matrixfunction3 "<< u*v.transpose(1)<<diagonalmatrix(z)<<std::endl;
NRVec< complex<double> > wz(n);
for (int i=0; i<a.nrows(); i++) wz[i] = w[i]/z[i];
std::cout <<"TEST matrixfunction4 "<< a0<< v.transpose(true)*diagonalmatrix(wz)*u<<std::endl;
*/
SparseSMat<double>::iterator pim(im);
for(; pim.notend(); ++pim) {
tmp = complex<double>(0,1)*(pim->elem);
result.add(pim->row,pim->col,tmp,false);
}
for (int i=0; i<a.nrows(); i++) w[i] = (*f)(w[i])/z[i];
u.diagmultl(w);
NRMat< complex<double> > r(n, n);
r.gemm(0.0, v, 'c', u, 'n', 1.0);
double inorm = cblas_dnrm2(n*n, (double *)r[0]+1, 2);
if (inorm > 1e-10) {
std::cout << "norm = " << inorm << std::endl;
laerror("nonzero norm of imaginary part of real matrixfunction");
}
return realpart(r);
return result;
}
NRMat<double> matrixfunction(NRSMat<double> a, double (*f) (double))
{
int n = a.nrows();
NRVec<double> w(n);
NRMat<double> v(n, n);
diagonalize(a, w, &v, 0);
template<>
const SparseSMat< complex<double> > realmatrix<SparseSMat<double> >(const SparseSMat<double> &re) {
SparseSMat< complex<double> > result(re.nrows(),re.ncols());
complex<double> tmp;
for (int i=0; i<a.nrows(); i++) w[i] = (*f)(w[i]);
NRMat<double> u = v;
v.diagmultl(w);
NRMat<double> r(n, n);
r.gemm(0.0, u, 't', v, 'n', 1.0);
return r;
SparseSMat<double>::iterator pre(re);
for(; pre.notend(); ++pre) {
tmp = pre->elem;
result.add(pre->row,pre->col,tmp,false);
}
return result;
}
template<>
const SparseSMat< complex<double> > imagmatrix<SparseSMat<double> >(const SparseSMat<double> &im) {
SparseSMat< complex<double> > result(im.nrows(),im.ncols());
complex<double> tmp;
SparseSMat<double>::iterator pim(im);
for(; pim.notend(); ++pim) {
tmp = complex<double>(0,1)*(pim->elem);
result.add(pim->row,pim->col,tmp,false);
}
return result;
}
NRMat<double> realmatrixfunction(NRMat<double> a, double (*f) (const double))
{
int n = a.nrows();
@@ -1145,6 +1371,7 @@ NRMat<double> realmatrixfunction(NRMat<double> a, double (*f) (const double))
return r;
}
NRMat<complex<double> > complexmatrixfunction(NRMat<double> a, double (*fre) (const double), double (*fim) (const double))
{
int n = a.nrows();
@@ -1169,6 +1396,16 @@ NRMat<complex<double> > complexmatrixfunction(NRMat<double> a, double (*fre) (co
// instantize template to an addresable function
complex<double> myccopy (const complex<double> &x)
{
return x;
}
double mycopy (const double x)
{
return x;
}
complex<double> myclog (const complex<double> &x)
{
return log(x);
@@ -1193,14 +1430,37 @@ double sqrtinv (const double x)
NRMat<double> log(const NRMat<double> &a)
{
return matrixfunction(a, &myclog, 1);
return matrixfunction(a, &myclog);
}
NRMat<complex<double> > log(const NRMat<complex<double> > &a)
{
return matrixfunction(a, &myclog);
}
NRMat<double> exp0(const NRMat<double> &a)
{
return matrixfunction(a, &mycexp, 1);
return matrixfunction(a, &mycexp);
}
NRMat<complex<double> > exp0(const NRMat<complex<double> > &a)
{
return matrixfunction(a, &mycexp);
}
NRMat<complex<double> > copytest(const NRMat<complex<double> > &a)
{
return matrixfunction(a, &myccopy);
}
NRMat<double> copytest(const NRMat<double> &a)
{
return matrixfunction(a, &myccopy);
}
const NRVec<double> diagofproduct(const NRMat<double> &a, const NRMat<double> &b,