working on permutations...

This commit is contained in:
2021-05-21 09:07:45 +02:00
parent f574d33a92
commit 4be6df3317
3 changed files with 357 additions and 9 deletions

View File

@@ -161,6 +161,316 @@ for(int i=n-1; i>=1; --i)
}
template <typename T>
bool NRPerm<T>::next(void)
{
this->copyonwrite();
int n=this->size();
// Find longest non-increasing suffix and the pivot
int i = n;
while (i > 1 && (*this)[i-1] >= (*this)[i]) --i;
if (i<=1) return false;
T piv=(*this)[i-1];
// Find rightmost element greater than the pivot
int j = n;
while ((*this)[j] <= piv) --j;
// Now the value array[j] will become the new pivot, Assertion: j >= i
// Swap the pivot with j
(*this)[i - 1] = (*this)[j];
(*this)[j] = piv;
// Reverse the suffix
j = n;
while (i < j) {
T temp = (*this)[i];
(*this)[i] = (*this)[j];
(*this)[j] = temp;
i++;
j--;
}
return true;
}
//Algorithm L from Knuth's volume 4
template <typename T>
PERM_RANK_TYPE NRPerm<T>::generate_all(void (*callback)(const NRPerm<T>&), int select)
{
int n=this->size();
NRVec_from1<T> c(0,n);
NRVec_from1<T> d(1,n);
int j,k,s;
T q;
T t;
this->identity();
PERM_RANK_TYPE sumperm=0;
p2:
sumperm++;
if(!select || (select&1) == (sumperm&1)) (*callback)(*this);
j=n; s=0;
p4:
q=c[j]+d[j];
if(q<0) goto p7;
if(q==j) goto p6;
t=(*this)[j-c[j]+s]; (*this)[j-c[j]+s]=(*this)[j-q+s]; (*this)[j-q+s]=t;
c[j]=q;
goto p2;
p6:
if(j==1) goto end;
s++;
p7:
d[j]= -d[j];
j--;
goto p4;
end:
return select? sumperm/2:sumperm;
}
template <typename T>
static T _n;
template <typename T>
static void (*_callback)(const NRPerm<T>& );
PERM_RANK_TYPE _sumperm;
template <typename T>
NRPerm<T> *_perm;
template <typename T>
void permg(T n)
{
if(n<= _n<T>)
{
for(T i=1;i<= _n<T>;i++)
{
if(!(*_perm<T>)[i]) //place not occupied
{
(*_perm<T>)[i]=n;
permg(n+1);
(*_perm<T>)[i]=0;
}
}
}
else
{
_sumperm++;
(*_callback<T>)(*_perm<T>);
}
}
template <typename T>
PERM_RANK_TYPE NRPerm<T>::generate_all2(void (*callback)(const NRPerm<T>&))
{
this->copyonwrite();
this->clear();
_n<T> = this->size();
_callback<T> =callback;
_sumperm=0;
_perm<T> = this;
permg(1);
return _sumperm;
}
template <typename T>
PERM_RANK_TYPE NRPerm<T>::generate_all_lex(void (*callback)(const NRPerm<T>&))
{
PERM_RANK_TYPE np=0;
this->identity();
do{
++np;
(*callback)(*this);
}while(this->next());
return np;
}
template <typename T>
PERM_RANK_TYPE NRPerm<T>::rank() const
{
int c,i,k;
PERM_RANK_TYPE r;
int n= this->size();
r=0;
for (k=1; k<=n; ++k)
{
T l=(*this)[k];
c=0;
for(i=k+1;i<=n;++i) if((*this)[i]<l) ++c;
r+= c;
i=n-k;
if(i) r*= i;
}
return r;
}
template <typename T>
NRVec_from1<T> NRPerm<T>::inversions(const int type, PERM_RANK_TYPE *prank) const
{
PERM_RANK_TYPE s=0;
int n=this->size();
int j,k;
T l;
NRVec_from1<T> i(n);
i.clear();
switch(type) {
case 3: /*number of elements right from p[j] smaller < p[j]*/
for(j=1;j<n;++j) /*number of elements right from j smaller <j*/
{
l=(*this)[j];
for(k=n;k>j;--k)
{
if((*this)[k]<l) ++i[j];
}
}
break;
case 2: /*number of elements left from p[j] bigger >p[j]*/
for(j=2;j<=n;++j) /*number of elements left from j bigger >j*/
{
l=(*this)[j];
for(k=1;k<j;++k)
{
if((*this)[k]>l) ++i[j];
}
}
break;
case 1:
for(j=1;j<=n;++j) /*number of elements right from j smaller <j*/
{
for(k=n;k>=1;--k)
{
if((*this)[k]==j) break;
if((*this)[k]<j) ++i[j];
}
}
break;
case 0:
for(j=1;j<=n;++j) /*number of elements left from j bigger >j*/
{
for(k=1;k<=n;++k)
{
if((*this)[k]==j) break;
if((*this)[k]>j) ++i[j];
}
}
break;
default: laerror("illegal type in inversions");
if(prank)
{
if(type!=3) laerror("rank can be computed from inversions only for type 3");
l=1;
for(j=1;j<n;++j)
{
l*= j;
*prank += l*i[n-j];
}
}
}
return i;
}
template <typename T>
NRPerm<T>::NRPerm(const int type, const NRVec_from1<T> &i)
{
int n=i.size();
this->resize(n);
int k,l;
T j;
switch(type) {
case 2:
case 1:
for(l=0,j=1; j<=n; ++j,++l)
{
/*shift left and place*/
for(k=n-l+1; k<=n-i[j]; ++k) (*this)[k-1]=(*this)[k];
(*this)[n-i[j]]=j;
}
break;
case 3:
case 0:
for(l=0,j=n; j>0; --j,++l)
{
/*shift right and place*/
for(k=l; k>=i[j]+1; --k) (*this)[k+1]=(*this)[k];
(*this)[i[j]+1]=j;
}
break;
default: laerror("illegal type in nrperm from inversions");
}
if(type>=2) (*this) = this->inverse();
}
template <typename T>
NRPerm<T>::NRPerm(const int n, const PERM_RANK_TYPE rank)
{
this->resize(n);
NRVec_from1<T> inv(n) ;
#ifdef DEBUG
if(rank>=factorial(n)) laerror("illegal rank for this n");
#endif
inv[n]=0;
int k;
PERM_RANK_TYPE r=rank;
for(k=n-1; k>=0; --k)
{
PERM_RANK_TYPE t;
t=factorial(k);
inv[n-k]=r/t;
r=r%t;
}
*this = NRPerm(3,inv);
}
#define MAXFACT 20
PERM_RANK_TYPE factorial(const int n)
{
static int ntop=20;
static PERM_RANK_TYPE a[MAXFACT+1]={1,1,2,6,24,120,720,5040,
40320,
362880,
3628800,
39916800ULL,
479001600ULL,
6227020800ULL,
87178291200ULL,
1307674368000ULL,
20922789888000ULL,
355687428096000ULL,
6402373705728000ULL,
121645100408832000ULL,
2432902008176640000ULL};
int j;
if (n < 0) laerror("negative argument of factorial");
if (n > MAXFACT) laerror("overflow in factorial");
while (ntop<n) {
j=ntop++;
a[ntop]=a[j]*ntop;
}
return a[n];
}
////////////////////////////////////////////////////////
template <typename T>