tensor: implemented merge_indices
This commit is contained in:
31
tensor.h
31
tensor.h
@@ -41,15 +41,11 @@
|
||||
|
||||
//TODO:
|
||||
//@@@contraction inside one tensor - compute resulting shape, loopover the shape, create index into the original tensor + loop over the contr. index, do the summation, store result
|
||||
//@@@ will need to store vector of INDEX to the original tensor for the result's flatindex
|
||||
//@@@ will not be particularly efficient
|
||||
//
|
||||
//maybe optional negative range for beta spin handling in some cases of fourindex-tensor conversions
|
||||
//
|
||||
//@@@ will need to store vector of INDEX to the original tensor for the result's flatindex, will not be particularly efficient
|
||||
//@@@?maybe optional negative range for beta spin handling in some cases of fourindex-tensor conversions
|
||||
//@@@?general permutation of individual indices - check the indices in sym groups remain adjacent, calculate result's shape, loopover the result and permute using unwind_callback
|
||||
//@@@? apply_permutation_algebra if result should be symmetric/antisymmetric in such a way to compute only the nonredundant part
|
||||
//@@@symetrizace a antisymetrizace skupiny indexu - jak efektivneji nez pres permutationalgebra?
|
||||
//
|
||||
//@@@ is that needed? we can flatten the relevant groups and permute index groups alternatively - maybe implement on high level this way for convenience
|
||||
|
||||
|
||||
|
||||
//do not distinguish covariant/contravariant indices
|
||||
@@ -160,9 +156,14 @@ struct INDEX
|
||||
{
|
||||
int group;
|
||||
int index;
|
||||
bool operator==(const INDEX &rhs) const {return group==rhs.group && index==rhs.index;};
|
||||
};
|
||||
typedef NRVec<INDEX> INDEXLIST; //collection of several indices
|
||||
|
||||
std::ostream & operator<<(std::ostream &s, const INDEX &x);
|
||||
std::istream & operator>>(std::istream &s, INDEX &x);
|
||||
|
||||
|
||||
int flatposition(int group, int index, const NRVec<indexgroup> &shape);
|
||||
int flatposition(const INDEX &i, const NRVec<indexgroup> &shape); //position of that index in FLATINDEX
|
||||
INDEX indexposition(int flatindex, const NRVec<indexgroup> &shape); //inverse to flatposition
|
||||
@@ -188,12 +189,12 @@ public:
|
||||
//constructors
|
||||
Tensor() : myrank(-1) {};
|
||||
explicit Tensor(const T &x) : myrank(0), data(1) {data[0]=x;}; //scalar
|
||||
Tensor(const NRVec<indexgroup> &s) : shape(s) { data.resize(calcsize()); calcrank();}; //general tensor
|
||||
Tensor(const NRVec<indexgroup> &s, const NRVec<INDEXNAME> &newnames) : shape(s), names(newnames) { data.resize(calcsize()); calcrank(); if(names.size()!=myrank && names.size()!=0) laerror("bad number of index names");}; //general tensor
|
||||
Tensor(const NRVec<indexgroup> &s, const NRVec<T> &mydata) : shape(s) { LA_largeindex dsize=calcsize(); calcrank(); if(mydata.size()!=dsize) laerror("inconsistent data size with shape"); data=mydata;}
|
||||
Tensor(const NRVec<indexgroup> &s, const NRVec<T> &mydata, const NRVec<INDEXNAME> &newnames) : shape(s), names(newnames) { LA_largeindex dsize=calcsize(); calcrank(); if(mydata.size()!=dsize) laerror("inconsistent data size with shape"); data=mydata; if(names.size()!=myrank && names.size()!=0) laerror("bad number of index names");}
|
||||
Tensor(const indexgroup &g) {shape.resize(1); shape[0]=g; data.resize(calcsize()); calcrank();}; //tensor with a single index group
|
||||
Tensor(const indexgroup &g, const NRVec<INDEXNAME> &newnames) : names(newnames) {shape.resize(1); shape[0]=g; data.resize(calcsize()); calcrank(); if(names.size()!=myrank && names.size()!=0) laerror("bad number of index names");}; //tensor with a single index group
|
||||
Tensor(const NRVec<indexgroup> &s) : shape(s) { data.resize(calcsize()); calcrank(); canonicalize_shape();}; //general tensor
|
||||
Tensor(const NRVec<indexgroup> &s, const NRVec<INDEXNAME> &newnames) : shape(s), names(newnames) { data.resize(calcsize()); calcrank(); canonicalize_shape(); if(names.size()!=myrank && names.size()!=0) laerror("bad number of index names");}; //general tensor
|
||||
Tensor(const NRVec<indexgroup> &s, const NRVec<T> &mydata) : shape(s) { LA_largeindex dsize=calcsize(); calcrank(); canonicalize_shape(); if(mydata.size()!=dsize) laerror("inconsistent data size with shape"); data=mydata;}
|
||||
Tensor(const NRVec<indexgroup> &s, const NRVec<T> &mydata, const NRVec<INDEXNAME> &newnames) : shape(s), names(newnames) { LA_largeindex dsize=calcsize(); calcrank(); canonicalize_shape(); if(mydata.size()!=dsize) laerror("inconsistent data size with shape"); data=mydata; if(names.size()!=myrank && names.size()!=0) laerror("bad number of index names");}
|
||||
Tensor(const indexgroup &g) {shape.resize(1); shape[0]=g; data.resize(calcsize()); calcrank(); canonicalize_shape();}; //tensor with a single index group
|
||||
Tensor(const indexgroup &g, const NRVec<INDEXNAME> &newnames) : names(newnames) {shape.resize(1); shape[0]=g; data.resize(calcsize()); calcrank(); canonicalize_shape(); if(names.size()!=myrank && names.size()!=0) laerror("bad number of index names");}; //tensor with a single index group
|
||||
Tensor(const Tensor &rhs): myrank(rhs.myrank), shape(rhs.shape), groupsizes(rhs.groupsizes), cumsizes(rhs.cumsizes), data(rhs.data), names(rhs.names) {};
|
||||
Tensor(int xrank, const NRVec<indexgroup> &xshape, const NRVec<LA_largeindex> &xgroupsizes, const NRVec<LA_largeindex> xcumsizes, const NRVec<T> &xdata) : myrank(xrank), shape(xshape), groupsizes(xgroupsizes), cumsizes(xcumsizes), data(xdata) {};
|
||||
Tensor(int xrank, const NRVec<indexgroup> &xshape, const NRVec<LA_largeindex> &xgroupsizes, const NRVec<LA_largeindex> xcumsizes, const NRVec<T> &xdata, const NRVec<INDEXNAME> &xnames) : myrank(xrank), shape(xshape), groupsizes(xgroupsizes), cumsizes(xcumsizes), data(xdata), names(xnames) {};
|
||||
@@ -212,6 +213,7 @@ public:
|
||||
void defaultnames() {names.resize(rank()); for(int i=0; i<rank(); ++i) sprintf(names[i].name,"i%03d",i);}
|
||||
int rank() const {return myrank;};
|
||||
int calcrank(); //is computed from shape
|
||||
void canonicalize_shape();
|
||||
LA_largeindex calcsize(); //set redundant data and return total size
|
||||
LA_largeindex size() const {return data.size();};
|
||||
void copyonwrite() {shape.copyonwrite(); groupsizes.copyonwrite(); cumsizes.copyonwrite(); data.copyonwrite(); names.copyonwrite();};
|
||||
@@ -316,6 +318,7 @@ public:
|
||||
|
||||
Tensor merge_index_groups(const NRVec<int> &groups) const;
|
||||
Tensor flatten(int group= -1) const; //split and uncompress a given group or all of them, leaving flat index order the same
|
||||
Tensor merge_indices(const INDEXLIST &il, int symmetry=0) const; //opposite to flatten (merging with optional symmetrization/antisymmetrization and compression)
|
||||
|
||||
NRVec<NRMat<T> > Tucker(typename LA_traits<T>::normtype thr=1e-12, bool inverseorder=true); //HOSVD-Tucker decomposition, return core tensor in *this, flattened
|
||||
Tensor inverseTucker(const NRVec<NRMat<T> > &x, bool inverseorder=true) const; //rebuild the original tensor from Tucker
|
||||
|
||||
Reference in New Issue
Block a user