newton solver for polynomial
This commit is contained in:
parent
f03953ba2d
commit
73aed62650
@ -142,6 +142,22 @@ return p;
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
T Polynomial<T>::newton(const T x0, const typename LA_traits<T>::normtype thr, const int maxit) const
|
||||||
|
{
|
||||||
|
Polynomial<T> d=derivative(1);
|
||||||
|
T x=x0;
|
||||||
|
for(int i=0; i<maxit; ++i)
|
||||||
|
{
|
||||||
|
T v=value(*this,x);
|
||||||
|
if(abs(v)<thr) break;
|
||||||
|
x -= v/value(d,x);
|
||||||
|
}
|
||||||
|
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/***************************************************************************//**
|
/***************************************************************************//**
|
||||||
|
35
polynomial.h
35
polynomial.h
@ -72,11 +72,11 @@ public:
|
|||||||
for(int i=0; i<=rhs.degree(); ++i) for(int j=0; j<=degree(); ++j) r[i+j] += rhs[i]*(*this)[j];
|
for(int i=0; i<=rhs.degree(); ++i) for(int j=0; j<=degree(); ++j) r[i+j] += rhs[i]*(*this)[j];
|
||||||
return r;
|
return r;
|
||||||
};
|
};
|
||||||
void simplify(const typename LA_traits<T>::normtype thr)
|
void simplify(const typename LA_traits<T>::normtype thr=0)
|
||||||
{
|
{
|
||||||
NOT_GPU(*this);
|
NOT_GPU(*this);
|
||||||
int n=degree();
|
int n=degree();
|
||||||
while(n>0 && abs((*this)[n])<thr) --n;
|
while(n>0 && abs((*this)[n])<=thr) --n;
|
||||||
resize(n,true);
|
resize(n,true);
|
||||||
};
|
};
|
||||||
void normalize() {if((*this)[degree()]==(T)0) laerror("zero coefficient at highest degree - simplify first"); *this /= (*this)[degree()];};
|
void normalize() {if((*this)[degree()]==(T)0) laerror("zero coefficient at highest degree - simplify first"); *this /= (*this)[degree()];};
|
||||||
@ -103,27 +103,41 @@ public:
|
|||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Polynomial derivative() const
|
Polynomial derivative(const int d=1) const
|
||||||
{
|
{
|
||||||
|
if(d==0) return *this;
|
||||||
|
if(d<0) return integral(-d);
|
||||||
NOT_GPU(*this);
|
NOT_GPU(*this);
|
||||||
int n=degree();
|
int n=degree();
|
||||||
if(n==0)
|
if(n-d<0)
|
||||||
{
|
{
|
||||||
Polynomial r(0);
|
Polynomial r(0);
|
||||||
r[0]=0;
|
r[0]=0;
|
||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
Polynomial r(n-1);
|
Polynomial r(n-d);
|
||||||
for(int i=1; i<=n; ++i) r[i-1] = (*this)[i]* ((T)i);
|
for(int i=d; i<=n; ++i)
|
||||||
|
{
|
||||||
|
int prod=1;
|
||||||
|
for(int j=i; j>=i-d+1; --j) prod *= j;
|
||||||
|
r[i-d] = (*this)[i]* ((T)prod);
|
||||||
|
}
|
||||||
return r;
|
return r;
|
||||||
};
|
};
|
||||||
Polynomial integral() const
|
Polynomial integral(const int d=1) const
|
||||||
{
|
{
|
||||||
|
if(d==0) return *this;
|
||||||
|
if(d<0) return derivative(-d);
|
||||||
NOT_GPU(*this);
|
NOT_GPU(*this);
|
||||||
int n=degree();
|
int n=degree();
|
||||||
Polynomial r(n+1);
|
Polynomial r(n+d);
|
||||||
r[0]=0;
|
for(int i=0; i<d; ++i) r[i]=0;
|
||||||
for(int i=0; i<=n; ++i) r[i+1] = (*this)[i]/((T)(i+1));
|
for(int i=0; i<=n; ++i)
|
||||||
|
{
|
||||||
|
int prod=1;
|
||||||
|
for(int j=i+1; j<=i+d;++j) prod *= j;
|
||||||
|
r[i+d] = (*this)[i]/((T)prod);
|
||||||
|
}
|
||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
void polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const;
|
void polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const;
|
||||||
@ -132,6 +146,7 @@ public:
|
|||||||
NRMat<T> companion() const; //matrix which has this characteristic polynomial
|
NRMat<T> companion() const; //matrix which has this characteristic polynomial
|
||||||
NRVec<typename LA_traits<T>::complextype> roots() const; //implemented for complex<double> and double only
|
NRVec<typename LA_traits<T>::complextype> roots() const; //implemented for complex<double> and double only
|
||||||
NRVec<T> realroots(const typename LA_traits<T>::normtype thr) const;
|
NRVec<T> realroots(const typename LA_traits<T>::normtype thr) const;
|
||||||
|
T newton(const T x0, const typename LA_traits<T>::normtype thr=1e-14, const int maxit=1000) const; //solve root from the guess
|
||||||
|
|
||||||
//@@@gcd, lcm euler and svd
|
//@@@gcd, lcm euler and svd
|
||||||
|
|
||||||
|
12
t.cc
12
t.cc
@ -2203,20 +2203,25 @@ cout << (value(p,u)*value(q,u) -value(r,u)).norm()<<endl;
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if(0)
|
if(1)
|
||||||
{
|
{
|
||||||
int n;
|
int n;
|
||||||
cin >>n ;
|
cin >>n ;
|
||||||
NRVec<double> r(n);
|
NRVec<double> r(n);
|
||||||
r.randomize(1.);
|
r.randomize(1.);
|
||||||
|
double x0=r[0]*0.8+r[1]*0.2;
|
||||||
r.sort(0);
|
r.sort(0);
|
||||||
Polynomial<double> p=polyfromroots(r);
|
Polynomial<double> p=polyfromroots(r);
|
||||||
cout <<p;
|
cout <<p;
|
||||||
cout <<r;
|
cout <<r;
|
||||||
cout <<p.realroots(1e-10);
|
cout <<p.realroots(1e-10);
|
||||||
|
double x=p.newton(x0);
|
||||||
|
double xdif=1e10;
|
||||||
|
for(int i=0; i<n; ++i) if(abs(x-r[i])<xdif) xdif=abs(x-r[i]);
|
||||||
|
cout<<"test newton "<<xdif<<endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(1)
|
if(0)
|
||||||
{
|
{
|
||||||
int n;
|
int n;
|
||||||
cin >>n ;
|
cin >>n ;
|
||||||
@ -2227,6 +2232,9 @@ Polynomial<double> p=lagrange_interpolation(x,y);
|
|||||||
cout <<x<<y<<p;
|
cout <<x<<y<<p;
|
||||||
NRVec<double> yy=values(p,x);
|
NRVec<double> yy=values(p,x);
|
||||||
cout<<"interpolation error= "<<(y-yy).norm()<<endl;
|
cout<<"interpolation error= "<<(y-yy).norm()<<endl;
|
||||||
|
Polynomial<double>q=p.integral(2);
|
||||||
|
Polynomial<double>pp=q.derivative(2);
|
||||||
|
cout<<"test deriv. "<<(pp-p).norm()<<endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user