continue implementing permutations

This commit is contained in:
2021-05-14 17:39:22 +02:00
parent 60e8a379f5
commit 83b9463334
4 changed files with 211 additions and 4 deletions

View File

@@ -22,7 +22,6 @@
#include "la_traits.h"
#include "vec.h"
#include "mat.h"
//permutations are always numbered from 1; offset is employed when applied to vectors and matrices
@@ -30,6 +29,8 @@ namespace LA {
//forward declaration
template <typename T> class NRVec_from1;
template <typename T> class CyclePerm;
template <typename T> class Partition;
template <typename T>
class NRPerm : public NRVec_from1<T> {
@@ -40,6 +41,7 @@ public:
NRPerm(const NRVec_from1<T> &rhs): NRVec_from1<T>(rhs) {};
NRPerm(const T &a, const int n): NRVec_from1<T>(a, n) {};
NRPerm(const T *a, const int n): NRVec_from1<T>(a, n) {};
NRPerm(const CyclePerm<T> &rhs, int n);
//specific operations
void identity();
@@ -57,10 +59,44 @@ public:
//@@@next permutation
//@@@lex rank
//@@@inversion tables
//@@@conversion to cycle structure and back
};
//permutations represented in the cycle format
template <typename T>
class CyclePerm : public NRVec_from1<NRVec_from1<T> > {
public:
CyclePerm() : NRVec_from1<NRVec_from1<T> >() {};
CyclePerm(const NRPerm<T> &rhs);
bool is_valid() const; //is it really a permutation
bool is_identity() const; //no cycles of length > 1
CyclePerm inverse() const; //reverse all cycles
int parity() const; //negative if having odd number of even-length cycles
Partition<T> cycles(const T n) const;
//@@@efficient algorithm for multiplication?
//@@@operator >> and <<
//@@@operation in place on matrix and vector
};
//partitions stored as #of 1s, #of 2s, etc.
template <typename T>
class Partition : public NRVec_from1<T> {
public:
Partition(): NRVec_from1<T>() {};
Partition(const int n) : NRVec_from1<T>(n) {};
T sum() const {T s=0; for(T i=1; i<=this->size(); ++i) s += i*(*this)[i]; return s;}
T nparts() const {T s=0; for(T i=1; i<=this->size(); ++i) s += (*this)[i]; return s;}
T nclasses() const {T s=0; for(T i=1; i<=this->size(); ++i) if((*this)[i]) ++s; return s;}
bool is_valid() const {return this->size() == this->sum();}
//@@@generate all partitions,
//@@@enumerator of partitions of n to r parts and total
//@@@adjoint partition,
//@@@ output as in the group character table
//@@@Sn character table
};
}//namespace