*** empty log message ***

This commit is contained in:
jiri 2006-09-11 23:34:41 +00:00
parent d55727cb83
commit b6e5dda896

View File

@ -167,7 +167,7 @@ return int(ceil(log(n)/log2-log(.75)));
template<class T, class C> template<class T, class C>
NRVec<C> exp_aux(const T &x, int &power) NRVec<C> exp_aux(const T &x, int &power,int maxpower= -1, int maxtaylor= -1)
{ {
//should better be computed by mathematica to have accurate last digits, chebyshev instead, see exp in glibc //should better be computed by mathematica to have accurate last digits, chebyshev instead, see exp in glibc
static double exptaylor[]={ static double exptaylor[]={
@ -195,6 +195,7 @@ static double exptaylor[]={
0.}; 0.};
double mnorm= x.norm(); double mnorm= x.norm();
power=nextpow2(mnorm); power=nextpow2(mnorm);
if(maxpower>=0 && power>maxpower) power=maxpower;
double scale=exp(-log(2.)*power); double scale=exp(-log(2.)*power);
@ -210,7 +211,7 @@ do {
} }
while(t*exptaylor[n]>precision);//taylor 0 will terminate in any case while(t*exptaylor[n]>precision);//taylor 0 will terminate in any case
if(maxtaylor>=0 && n>maxtaylor) n=maxtaylor; //useful e.g. if the matrix is nilpotent in order n+1 as the CC T operator for n electrons
int i; //adjust the coefficients in order to avoid scaling the argument int i; //adjust the coefficients in order to avoid scaling the argument
@ -227,12 +228,12 @@ return taylor2;
//it seems that we do not gain anything by polynom vs polynom0, check the m-optimization! //it seems that we do not gain anything by polynom vs polynom0, check the m-optimization!
template<class T> template<class T>
const T exp(const T &x, const bool horner=true) const T exp(const T &x, bool horner=true, int maxpower= -1, int maxtaylor= -1 )
{ {
int power; int power;
//prepare the polynom of and effectively scale T //prepare the polynom of and effectively scale T
NRVec<typename LA_traits<T>::elementtype> taylor2=exp_aux<T,typename LA_traits<T>::elementtype>(x,power); NRVec<typename LA_traits<T>::elementtype> taylor2=exp_aux<T,typename LA_traits<T>::elementtype>(x,power,maxpower,maxtaylor);
T r= horner?polynom0(x,taylor2):polynom(x,taylor2); T r= horner?polynom0(x,taylor2):polynom(x,taylor2);
@ -248,16 +249,15 @@ return r;
//this simple implementation seems not to be numerically stable enough //this simple implementation seems not to be numerically stable enough
//and probably not efficient either //and probably not efficient either
//@@@ make more efficient - for nilpotent mat at known power and
template<class M, class V> template<class M, class V>
void exptimesdestructive(const M &mat, V &result, V &rhs, bool transpose=false, const double scale=1. ) //uses just matrix vector multiplication void exptimesdestructive(const M &mat, V &result, V &rhs, bool transpose=false, const double scale=1., int maxpower= -1, int maxtaylor= -1) //uses just matrix vector multiplication
{ {
if(mat.nrows()!=mat.ncols()||(unsigned int) mat.nrows() != (unsigned int)rhs.size()) laerror("inappropriate sizes in exptimes"); if(mat.nrows()!=mat.ncols()||(unsigned int) mat.nrows() != (unsigned int)rhs.size()) laerror("inappropriate sizes in exptimes");
int power; int power;
//prepare the polynom of and effectively scale the matrix //prepare the polynom of and effectively scale the matrix
NRVec<typename LA_traits<V>::elementtype> taylor2=exp_aux<M,typename LA_traits<V>::elementtype>(mat,power); NRVec<typename LA_traits<V>::elementtype> taylor2=exp_aux<M,typename LA_traits<V>::elementtype>(mat,power,maxpower,maxtaylor);
cerr <<"test power "<<power<<endl; cerr <<"test power "<<power<<endl;
V tmp; V tmp;
@ -281,10 +281,10 @@ return;
template<class M, class V> template<class M, class V>
const V exptimes(const M &mat, V rhs, bool transpose=false, const double scale=1.) const V exptimes(const M &mat, V rhs, bool transpose=false, const double scale=1., int maxpower= -1, int maxtaylor= -1 )
{ {
V result; V result;
exptimesdestructive(mat,result,rhs,transpose,scale); exptimesdestructive(mat,result,rhs,transpose,scale,maxpower,maxtaylor);
return result; return result;
} }