*** empty log message ***
This commit is contained in:
parent
d55727cb83
commit
b6e5dda896
18
matexp.h
18
matexp.h
@ -167,7 +167,7 @@ return int(ceil(log(n)/log2-log(.75)));
|
||||
|
||||
|
||||
template<class T, class C>
|
||||
NRVec<C> exp_aux(const T &x, int &power)
|
||||
NRVec<C> exp_aux(const T &x, int &power,int maxpower= -1, int maxtaylor= -1)
|
||||
{
|
||||
//should better be computed by mathematica to have accurate last digits, chebyshev instead, see exp in glibc
|
||||
static double exptaylor[]={
|
||||
@ -195,6 +195,7 @@ static double exptaylor[]={
|
||||
0.};
|
||||
double mnorm= x.norm();
|
||||
power=nextpow2(mnorm);
|
||||
if(maxpower>=0 && power>maxpower) power=maxpower;
|
||||
double scale=exp(-log(2.)*power);
|
||||
|
||||
|
||||
@ -210,7 +211,7 @@ do {
|
||||
}
|
||||
while(t*exptaylor[n]>precision);//taylor 0 will terminate in any case
|
||||
|
||||
|
||||
if(maxtaylor>=0 && n>maxtaylor) n=maxtaylor; //useful e.g. if the matrix is nilpotent in order n+1 as the CC T operator for n electrons
|
||||
|
||||
|
||||
int i; //adjust the coefficients in order to avoid scaling the argument
|
||||
@ -227,12 +228,12 @@ return taylor2;
|
||||
|
||||
//it seems that we do not gain anything by polynom vs polynom0, check the m-optimization!
|
||||
template<class T>
|
||||
const T exp(const T &x, const bool horner=true)
|
||||
const T exp(const T &x, bool horner=true, int maxpower= -1, int maxtaylor= -1 )
|
||||
{
|
||||
int power;
|
||||
|
||||
//prepare the polynom of and effectively scale T
|
||||
NRVec<typename LA_traits<T>::elementtype> taylor2=exp_aux<T,typename LA_traits<T>::elementtype>(x,power);
|
||||
NRVec<typename LA_traits<T>::elementtype> taylor2=exp_aux<T,typename LA_traits<T>::elementtype>(x,power,maxpower,maxtaylor);
|
||||
|
||||
|
||||
T r= horner?polynom0(x,taylor2):polynom(x,taylor2);
|
||||
@ -248,16 +249,15 @@ return r;
|
||||
|
||||
//this simple implementation seems not to be numerically stable enough
|
||||
//and probably not efficient either
|
||||
//@@@ make more efficient - for nilpotent mat at known power and
|
||||
|
||||
template<class M, class V>
|
||||
void exptimesdestructive(const M &mat, V &result, V &rhs, bool transpose=false, const double scale=1. ) //uses just matrix vector multiplication
|
||||
void exptimesdestructive(const M &mat, V &result, V &rhs, bool transpose=false, const double scale=1., int maxpower= -1, int maxtaylor= -1) //uses just matrix vector multiplication
|
||||
{
|
||||
if(mat.nrows()!=mat.ncols()||(unsigned int) mat.nrows() != (unsigned int)rhs.size()) laerror("inappropriate sizes in exptimes");
|
||||
|
||||
int power;
|
||||
//prepare the polynom of and effectively scale the matrix
|
||||
NRVec<typename LA_traits<V>::elementtype> taylor2=exp_aux<M,typename LA_traits<V>::elementtype>(mat,power);
|
||||
NRVec<typename LA_traits<V>::elementtype> taylor2=exp_aux<M,typename LA_traits<V>::elementtype>(mat,power,maxpower,maxtaylor);
|
||||
cerr <<"test power "<<power<<endl;
|
||||
|
||||
V tmp;
|
||||
@ -281,10 +281,10 @@ return;
|
||||
|
||||
|
||||
template<class M, class V>
|
||||
const V exptimes(const M &mat, V rhs, bool transpose=false, const double scale=1.)
|
||||
const V exptimes(const M &mat, V rhs, bool transpose=false, const double scale=1., int maxpower= -1, int maxtaylor= -1 )
|
||||
{
|
||||
V result;
|
||||
exptimesdestructive(mat,result,rhs,transpose,scale);
|
||||
exptimesdestructive(mat,result,rhs,transpose,scale,maxpower,maxtaylor);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user