implemented polynomial gcd
This commit is contained in:
parent
73aed62650
commit
cc65575536
@ -19,6 +19,7 @@
|
||||
#include "polynomial.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
|
||||
namespace LA {
|
||||
@ -77,8 +78,8 @@ NRMat<T> Polynomial<T>::companion() const
|
||||
if((*this)[degree()]==(T)0) laerror("zero coefficient at highest degree - simplify first");
|
||||
NRMat<T> a(degree(),degree());
|
||||
a.clear();
|
||||
for(int i=0; i<degree(); ++i) a(degree()-1,i) = -(*this)[i];
|
||||
for(int i=0; i<degree()-1; ++i) a(i,i+1) = (*this)[degree()];
|
||||
for(int i=0; i<degree(); ++i) a(degree()-1,i) = -(*this)[i]/(*this)[degree()];
|
||||
for(int i=0; i<degree()-1; ++i) a(i,i+1) = (T)1;
|
||||
return a;
|
||||
}
|
||||
|
||||
@ -158,6 +159,49 @@ return x;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
Polynomial<T> poly_gcd(const Polynomial<T> &p, const Polynomial<T> &q, const typename LA_traits<T>::normtype thr, const int d)
|
||||
{
|
||||
Polynomial<T> big,small;
|
||||
if(p.degree() < q.degree()) {big=q; small=p;} else {big=p; small=q;}
|
||||
small.simplify(thr);
|
||||
if(small.degree()==0) return small;
|
||||
Polynomial<T> help;
|
||||
do {
|
||||
help=small;
|
||||
small= big%small;
|
||||
big=help;
|
||||
small.simplify(thr);
|
||||
}
|
||||
while((d<0 && small.degree() != 0) || (d>=0 && small.degree()>=d));
|
||||
return big;
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
Polynomial<int> svd_gcd(const Polynomial<int> &p, const Polynomial<int> &q, const typename LA_traits<int>::normtype thr)
|
||||
{
|
||||
laerror("SVD gcd only for floating point numbers");
|
||||
return p;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Polynomial<T> svd_gcd(const Polynomial<T> &p, const Polynomial<T> &q, const typename LA_traits<T>::normtype thr)
|
||||
{
|
||||
Polynomial<T> big,small;
|
||||
if(p.degree() < q.degree()) {big=q; small=p;} else {big=p; small=q;}
|
||||
small.simplify(thr);
|
||||
if(small.degree()==0) return small;
|
||||
NRMat<T> s = Sylvester(p,q);
|
||||
NRMat<T> u(s.nrows(),s.nrows()),v(s.ncols(),s.ncols());
|
||||
NRVec<typename LA_traits<T>::normtype> w(s.nrows());
|
||||
singular_decomposition(s,&u,w,&v,0);
|
||||
int rank=0;
|
||||
for(int i=0; i<w.size(); ++i) if(w[i]>thr*::sqrt((double)big.degree()*small.degree())) ++rank;
|
||||
int d=big.degree()+small.degree()-rank;
|
||||
return poly_gcd(big,small,thr,d);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/***************************************************************************//**
|
||||
@ -170,6 +214,9 @@ template class Polynomial<std::complex<double> >;
|
||||
#define INSTANTIZE(T) \
|
||||
template NRMat<T> Sylvester(const Polynomial<T> &p, const Polynomial<T> &q); \
|
||||
template Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y); \
|
||||
template Polynomial<T> poly_gcd(const Polynomial<T> &p, const Polynomial<T> &q, const typename LA_traits<T>::normtype thr,const int d); \
|
||||
template Polynomial<T> svd_gcd(const Polynomial<T> &p, const Polynomial<T> &q, const typename LA_traits<T>::normtype thr); \
|
||||
|
||||
|
||||
|
||||
INSTANTIZE(int)
|
||||
|
14
polynomial.h
14
polynomial.h
@ -75,6 +75,7 @@ public:
|
||||
void simplify(const typename LA_traits<T>::normtype thr=0)
|
||||
{
|
||||
NOT_GPU(*this);
|
||||
this->copyonwrite();
|
||||
int n=degree();
|
||||
while(n>0 && abs((*this)[n])<=thr) --n;
|
||||
resize(n,true);
|
||||
@ -148,8 +149,6 @@ public:
|
||||
NRVec<T> realroots(const typename LA_traits<T>::normtype thr) const;
|
||||
T newton(const T x0, const typename LA_traits<T>::normtype thr=1e-14, const int maxit=1000) const; //solve root from the guess
|
||||
|
||||
//@@@gcd, lcm euler and svd
|
||||
|
||||
};
|
||||
|
||||
//this is very general, can be used also for nesting polynomials
|
||||
@ -203,6 +202,17 @@ template <typename T>
|
||||
extern Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y);
|
||||
|
||||
|
||||
template <typename T>
|
||||
extern Polynomial<T> poly_gcd(const Polynomial<T> &p, const Polynomial<T> &q, const typename LA_traits<T>::normtype thr=0, const int d= -1);
|
||||
|
||||
template <typename T>
|
||||
extern Polynomial<T> svd_gcd(const Polynomial<T> &p, const Polynomial<T> &q, const typename LA_traits<T>::normtype thr=0);
|
||||
|
||||
template <typename T>
|
||||
Polynomial<T> poly_lcm(const Polynomial<T> &p, const Polynomial<T> &q, const typename LA_traits<T>::normtype thr=0)
|
||||
{
|
||||
return p*q/poly_gcd(p,q,thr);
|
||||
}
|
||||
|
||||
|
||||
}//namespace
|
||||
|
38
t.cc
38
t.cc
@ -2203,18 +2203,23 @@ cout << (value(p,u)*value(q,u) -value(r,u)).norm()<<endl;
|
||||
|
||||
}
|
||||
|
||||
if(1)
|
||||
if(0)
|
||||
{
|
||||
int n;
|
||||
cin >>n ;
|
||||
NRVec<double> r(n);
|
||||
r.randomize(1.);
|
||||
//r.randomize(1.);
|
||||
//wilkinson's ill-conditionel polynomial
|
||||
for(int i=0; i<n;++i) r[i]=i+1;
|
||||
double x0=r[0]*0.8+r[1]*0.2;
|
||||
r.sort(0);
|
||||
Polynomial<double> p=polyfromroots(r);
|
||||
cout <<p;
|
||||
cout <<r;
|
||||
cout <<p.realroots(1e-10);
|
||||
NRVec<double> rr= p.realroots(1e-10);
|
||||
rr.resize(n,true);
|
||||
cout <<rr;
|
||||
cout <<"root error = "<<(r-rr).norm()<<endl;
|
||||
double x=p.newton(x0);
|
||||
double xdif=1e10;
|
||||
for(int i=0; i<n; ++i) if(abs(x-r[i])<xdif) xdif=abs(x-r[i]);
|
||||
@ -2237,4 +2242,31 @@ Polynomial<double>pp=q.derivative(2);
|
||||
cout<<"test deriv. "<<(pp-p).norm()<<endl;
|
||||
}
|
||||
|
||||
if(1)
|
||||
{
|
||||
int n;
|
||||
cin >>n;
|
||||
NRVec<double> rr(n);
|
||||
rr.randomize(1.);
|
||||
rr.sort(0);
|
||||
if(rr.size()>2) rr[1]=rr[0];//make a degenerate root
|
||||
NRVec<double> pr(2*n);
|
||||
NRVec<double> qr(2*n);
|
||||
pr.randomize(1.);
|
||||
qr.randomize(1.);
|
||||
for(int i=0; i<n; ++i) {pr[i]=qr[i]=rr[i];}
|
||||
Polynomial<double> p=polyfromroots(pr);
|
||||
Polynomial<double> q=polyfromroots(qr);
|
||||
Polynomial<double> g=poly_gcd(p,q,1e-8);
|
||||
cout <<"GCD ="<<g;
|
||||
Polynomial<double> gg=svd_gcd(p,q,1e-13);
|
||||
cout <<"SVDGCD ="<<gg;
|
||||
NRVec<double> rrr=g.realroots(1e-5);
|
||||
NRVec<double> rrrr=gg.realroots(1e-5);
|
||||
cout <<rr<<rrr<<rrrr;
|
||||
cout <<"test gcd "<<(rr-rrr).norm()<<endl;
|
||||
cout <<"test svdgcd "<<(rr-rrrr).norm()<<endl;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user