implemented diffabs() useful for checks of results up to a sign

This commit is contained in:
Jiri Pittner 2021-06-30 14:54:35 +02:00
parent 9d0249cdc4
commit cf86493a6f
5 changed files with 121 additions and 52 deletions

46
mat.cc
View File

@ -1429,29 +1429,6 @@ NRMat<std::complex<double> >::operator+=(const NRMat< std::complex<double> > &r
return *this; return *this;
} }
/***************************************************************************//**
* add a given general matrix (type T) \f$A\f$ to the current complex matrix
* @param[in] rhs matrix \f$A\f$ of type T
* @return reference to the modified matrix
******************************************************************************/
template <typename T>
NRMat<T> & NRMat<T>::operator+=(const NRMat<T> &rhs) {
#ifdef DEBUG
if (nn != rhs.nn || mm != rhs.mm) laerror("incompatible matrices");
#endif
SAME_LOC(*this, rhs);
NOT_GPU(*this);
copyonwrite();
#ifdef MATPTR
for(size_t i=0; i< (size_t)nn*mm; i++) v[0][i] += rhs.v[0][i];
#else
for(size_t i=0; i< (size_t)nn*mm; i++) v[i] += rhs.v[i];
#endif
return *this;
}
/***************************************************************************//** /***************************************************************************//**
* subtract a given real matrix \f$A\f$ from the current real matrix * subtract a given real matrix \f$A\f$ from the current real matrix
@ -1505,29 +1482,6 @@ NRMat< std::complex<double> >::operator-=(const NRMat< std::complex<double> > &
} }
/***************************************************************************//**
* subtract a given general matrix (type T) \f$A\f$ from the current matrix
* @param[in] rhs matrix \f$A\f$ of type T
* @return reference to the modified matrix
******************************************************************************/
template <typename T>
NRMat<T> & NRMat<T>::operator-=(const NRMat<T> &rhs) {
#ifdef DEBUG
if (nn != rhs.nn || mm != rhs.mm) laerror("incompatible matrices");
#endif
SAME_LOC(*this, rhs);
NOT_GPU(*this);
copyonwrite();
#ifdef MATPTR
for(size_t i=0; i< (size_t)nn*mm; i++) v[0][i] += rhs.v[0][i];
#else
for(size_t i=0; i<(size_t) nn*mm; i++) v[i] += rhs.v[i];
#endif
return *this;
}
/***************************************************************************//** /***************************************************************************//**
* add a given sparse real matrix \f$A\f$ stored in packed form to the current * add a given sparse real matrix \f$A\f$ stored in packed form to the current

70
mat.h
View File

@ -406,6 +406,7 @@ public:
#endif #endif
} }
NRMat diffabs(const NRMat &rhs) const; //difference of absolute values
}; };
}//namespace }//namespace
@ -1402,6 +1403,75 @@ void NRMat<T>::moveto(const GPUID dest) {
#endif #endif
/***************************************************************************//**
* add a given general matrix (type T) \f$A\f$ to the current complex matrix
* @param[in] rhs matrix \f$A\f$ of type T
* @return reference to the modified matrix
******************************************************************************/
template <typename T>
NRMat<T> & NRMat<T>::operator+=(const NRMat<T> &rhs) {
#ifdef DEBUG
if (nn != rhs.nn || mm != rhs.mm) laerror("incompatible matrices");
#endif
SAME_LOC(*this, rhs);
NOT_GPU(*this);
copyonwrite();
#ifdef MATPTR
for(size_t i=0; i< (size_t)nn*mm; i++) v[0][i] += rhs.v[0][i];
#else
for(size_t i=0; i< (size_t)nn*mm; i++) v[i] += rhs.v[i];
#endif
return *this;
}
/***************************************************************************//**
* subtract a given general matrix (type T) \f$A\f$ from the current matrix
* @param[in] rhs matrix \f$A\f$ of type T
* @return reference to the modified matrix
******************************************************************************/
template <typename T>
NRMat<T> & NRMat<T>::operator-=(const NRMat<T> &rhs) {
#ifdef DEBUG
if (nn != rhs.nn || mm != rhs.mm) laerror("incompatible matrices");
#endif
SAME_LOC(*this, rhs);
NOT_GPU(*this);
copyonwrite();
#ifdef MATPTR
for(size_t i=0; i< (size_t)nn*mm; i++) v[0][i] -= rhs.v[0][i];
#else
for(size_t i=0; i<(size_t) nn*mm; i++) v[i] -= rhs.v[i];
#endif
return *this;
}
/*difference of absolute values*/
template <typename T>
NRMat<T> NRMat<T>::diffabs(const NRMat<T> &rhs) const {
#ifdef DEBUG
if (nn != rhs.nn ||mm!=rhs.mm) laerror("incompatible dimensions");
#endif
NOT_GPU(*this);
NOT_GPU(rhs);
NRMat<T> r(nn,mm);
#ifdef MATPTR
for(size_t i=0; i< (size_t)nn*mm; i++) r.v[0][i] = MYABS(v[0][i]) - MYABS(rhs.v[0][i]);
#else
for(size_t i=0; i<(size_t) nn*mm; i++) r.v[i] = MYABS(v[i]) - MYABS(rhs.v[i]);
#endif
return r;
}

View File

@ -26,12 +26,6 @@
namespace LA { namespace LA {
template <typename T>
inline typename LA_traits<T>::normtype MYABS(const T &x) {return abs(x);}
template <>
inline unsigned int MYABS(const unsigned int &x) {return x;}
template <typename T> template <typename T>
class Polynomial : public NRVec<T> { class Polynomial : public NRVec<T> {

16
smat.h
View File

@ -186,6 +186,7 @@ public:
#endif #endif
} }
NRSMat diffabs(const NRSMat &rhs) const; //difference of absolute values
}; };
}//namespace }//namespace
@ -389,6 +390,21 @@ inline NRSMat<T> & NRSMat<T>::operator-=(const T &a) {
return *this; return *this;
} }
/*difference of absolute values*/
template <typename T>
NRSMat<T> NRSMat<T>::diffabs(const NRSMat<T> &rhs) const {
#ifdef DEBUG
if (nn != rhs.nn) laerror("incompatible dimensions");
#endif
NOT_GPU(*this);
NOT_GPU(rhs);
NRSMat<T> r(nn);
for(int i=0; i<NN2; ++i) r.v[i] = MYABS(v[i]) - MYABS(rhs.v[i]);
return r;
}
/***************************************************************************//** /***************************************************************************//**
* add up this real symmetric matrix with given symmetric matrix * add up this real symmetric matrix with given symmetric matrix
* @param[in] rhs real symmetric matrix to be added * @param[in] rhs real symmetric matrix to be added

35
vec.h
View File

@ -33,6 +33,20 @@ template <typename T> void lawritemat(FILE *file, const T *a, int r, int c,
template <typename T> class NRPerm; template <typename T> class NRPerm;
template <typename T> class CyclePerm; template <typename T> class CyclePerm;
/***************************************************************************//**
* auxiliary macro to avoid compilation errors for some types
******************************************************************************/
template <typename T>
inline typename LA_traits<T>::normtype MYABS(const T &x) {return abs(x);}
template <> inline unsigned char MYABS(const unsigned char &x) {return x;}
template <> inline unsigned short MYABS(const unsigned short &x) {return x;}
template <> inline unsigned int MYABS(const unsigned int &x) {return x;}
template <> inline unsigned long MYABS(const unsigned long &x) {return x;}
template <> inline unsigned long long MYABS(const unsigned long long &x) {return x;}
/***************************************************************************//** /***************************************************************************//**
* static constants used in several cblas-routines * static constants used in several cblas-routines
******************************************************************************/ ******************************************************************************/
@ -394,6 +408,8 @@ public:
#endif #endif
} }
NRVec diffabs(const NRVec &rhs) const; //difference of absolute values
}; };
@ -759,6 +775,25 @@ inline NRVec<T> & NRVec<T>::operator-=(const NRVec<T> &rhs) {
return *this; return *this;
} }
/***************************************************************************//**
* difference of elements of two vectors in absolute values
* \f[\vec{z}_i = \vec{x}_i-\vec{y}_i\f]
* @param[in] rhs vector \f$\vec{y}\f$
* @return reference to the modified vector
******************************************************************************/
template <typename T>
NRVec<T> NRVec<T>::diffabs(const NRVec<T> &rhs) const {
#ifdef DEBUG
if (nn != rhs.nn) laerror("incompatible dimensions");
#endif
NOT_GPU(*this);
NOT_GPU(rhs);
NRVec<T> r(nn);
for(int i=0; i<nn; ++i) r[i] = MYABS(v[i]) - MYABS(rhs.v[i]);
return r;
}
/***************************************************************************//** /***************************************************************************//**
* multiply this general vector \f$\vec{x}\f$ by scalar value \f$\lambda\f$ * multiply this general vector \f$\vec{x}\f$ by scalar value \f$\lambda\f$