*** empty log message ***
This commit is contained in:
parent
6921ce48cf
commit
d4fa09137a
222
davidson.h
222
davidson.h
@ -1,12 +1,15 @@
|
||||
#ifndef _davidson_h
|
||||
#define _davidson_h
|
||||
#include "vec.h"
|
||||
#include "smat.h"
|
||||
#include "mat.h"
|
||||
#include "sparsemat.h"
|
||||
#include "nonclass.h"
|
||||
#include "auxstorage.h"
|
||||
|
||||
//Davidson diagonalization of real symmetric matrix (modified Lanczos)
|
||||
|
||||
//matrix can be any class which has nrows(), ncols(), diagonalof() and NRVec::gemv() available
|
||||
//matrix can be any class which has nrows(), ncols(), diagonalof(), issymmetric(), and gemv() available
|
||||
//does not even have to be explicitly stored - direct CI
|
||||
|
||||
export template <typename T, typename Matrix>
|
||||
@ -17,3 +20,220 @@ extern void davidson(const Matrix &bigmat, NRVec<T> &eivals, NRVec<T> *eivecs, c
|
||||
//@@@options: left eigenvectors by matrix transpose, overridesymmetric (for nrmat)
|
||||
//@@@small matrix gdiagonalize - shift complex roots up (option to gdiagonalize?)
|
||||
//@@@test gdiagonalize whether it sorts the roots and what for complex ones
|
||||
|
||||
|
||||
//Davidson algorithm: J. Comp. Phys. 17:817 (1975)
|
||||
|
||||
//@@@implement left eigenvectors for nonsymmetric case
|
||||
|
||||
template <typename T, typename Matrix>
|
||||
void davidson(const Matrix &bigmat, NRVec<T> &eivals, NRVec<T> *eivecs, const char *eivecsfile,
|
||||
int nroots, const bool verbose, const double eps,
|
||||
const bool incore, int maxit, const int maxkrylov)
|
||||
{
|
||||
bool flag=0;
|
||||
int n=bigmat.nrows();
|
||||
if ( n!= (int)bigmat.ncols()) laerror("non-square matrix in davidson");
|
||||
if(eivals.size()<nroots) laerror("too small eivals dimension in davidson");
|
||||
|
||||
NRVec<T> vec1(n),vec2(n);
|
||||
NRMat<T> smallH(maxkrylov,maxkrylov),smallS(maxkrylov,maxkrylov),smallV;
|
||||
NRVec<T> r(maxkrylov);
|
||||
NRVec<T> *v0,*v1;
|
||||
AuxStorage<T> *s0,*s1;
|
||||
|
||||
if(incore)
|
||||
{
|
||||
v0 = new NRVec<T>[maxkrylov];
|
||||
v1 = new NRVec<T>[maxkrylov];
|
||||
}
|
||||
else
|
||||
{
|
||||
s0 = new AuxStorage<T>;
|
||||
s1 = new AuxStorage<T>;
|
||||
}
|
||||
|
||||
int i,j;
|
||||
|
||||
if(maxkrylov<maxit) maxit=maxkrylov;
|
||||
if(nroots>=maxkrylov) nroots =maxkrylov-1;
|
||||
int nroot=0;
|
||||
int oldnroot;
|
||||
smallS=0;
|
||||
smallH=0;
|
||||
//guess based on lowest diagonal element of the matrix
|
||||
bigmat.diagonalof(vec2);
|
||||
vec1=0;
|
||||
{T t=1e100; int i,j;
|
||||
for(i=0, j= -1; i<n; ++i) if(vec2[i]<t) {t=vec2[i]; j=i;}
|
||||
vec1[j]=1;}
|
||||
|
||||
//init Krylov matrices
|
||||
bigmat.gemv(0,vec2,'n',1,vec1); //avoid bigmat.operator*(vec), since that needs to allocate another n-sized vector
|
||||
smallH(0,0) = vec1*vec2;
|
||||
smallS(0,0) = vec1*vec1;
|
||||
int krylovsize = 0;
|
||||
if(incore) v0[0]=vec1; else s0->put(vec1,0);
|
||||
if(incore) v1[0]=vec2; else s1->put(vec2,0);
|
||||
|
||||
|
||||
//iterative Davidson loop
|
||||
int it;
|
||||
for(it=0; it<maxit; ++it)
|
||||
{
|
||||
if(it>0) //if this is the first iteration just need to diagonalise the matrix
|
||||
{
|
||||
//update reduced overlap matrix
|
||||
if(incore) v0[krylovsize]=vec1; else s0->put(vec1,krylovsize);
|
||||
for(j=0; j<krylovsize; ++j)
|
||||
{
|
||||
if(!incore) s0->get(vec2,j);
|
||||
smallS(krylovsize,j) = smallS(j,krylovsize) = vec1*(incore?v0[j]:vec2);
|
||||
}
|
||||
smallS(krylovsize,krylovsize) = vec1*vec1;
|
||||
bigmat.gemv(0,vec2,'n',1,vec1);
|
||||
if(incore) v1[krylovsize]=vec2; else s1->put(vec2,krylovsize);
|
||||
|
||||
//update reduced hamiltonian matrix
|
||||
smallH(krylovsize,krylovsize) = vec1*vec2;
|
||||
for(j=0; j<krylovsize; ++j)
|
||||
{
|
||||
if(!incore) s0->get(vec1,j);
|
||||
smallH(j,krylovsize) = (incore?v0[j]:vec1)*vec2;
|
||||
if(bigmat.issymmetric()) smallH(krylovsize,j) = smallH(j,krylovsize);
|
||||
}
|
||||
if(!bigmat.issymmetric())
|
||||
{
|
||||
if(!incore) s0->get(vec1,krylovsize);
|
||||
for(j=0; j<krylovsize; ++j)
|
||||
{
|
||||
if(!incore) s1->get(vec2,j);
|
||||
smallH(krylovsize,j) = incore? v1[j]*v0[krylovsize] :vec1*vec2;
|
||||
}
|
||||
}
|
||||
}
|
||||
smallV=smallH;
|
||||
NRMat<T> smallSwork=smallS;
|
||||
if(bigmat.issymmetric())
|
||||
diagonalize(smallV,r,1,1,krylovsize+1,&smallSwork,1); //for symmetric matrix they have already been sorted to ascending order in lapack
|
||||
else
|
||||
{
|
||||
NRVec<T> ri(krylovsize+1),beta(krylovsize+1);
|
||||
NRMat<T> scratch;
|
||||
scratch=smallV;
|
||||
gdiagonalize(scratch, r, ri,NULL, &smallV, 1, krylovsize+1, 2, 0, &smallSwork, &beta);
|
||||
for(int i=0; i<=krylovsize; ++i) {r[i]/=beta[i]; ri[i]/=beta[i];}
|
||||
}
|
||||
|
||||
T eival_n=r[nroot];
|
||||
oldnroot=nroot;
|
||||
typename LA_traits<T>::normtype test=abs(smallV(krylovsize,nroot));
|
||||
if(test<eps) nroot++;
|
||||
if(it==0) nroot = 0;
|
||||
for(int iroot=0; iroot<=min(krylovsize,nroots-1); ++iroot)
|
||||
{
|
||||
test = abs(smallV(krylovsize,iroot));
|
||||
if(test>eps) nroot=min(nroot,iroot);
|
||||
if(verbose && iroot<=max(oldnroot,nroot))
|
||||
{
|
||||
cout <<"Davidson: iter="<<it <<" dim="<<krylovsize<<" root="<<iroot<<" energy="<<r[iroot]<<"\n";
|
||||
}
|
||||
}
|
||||
|
||||
if(verbose && oldnroot!=nroot) cout <<"root no. "<<oldnroot<<" converged\n";
|
||||
if (nroot>=nroots) goto converged;
|
||||
if (it==maxit-1) break; //not converged
|
||||
|
||||
if (krylovsize==maxkrylov) //restart, krylov space exceeded
|
||||
{
|
||||
if(nroot!=0) {flag=1; goto finished;}
|
||||
smallH=0;
|
||||
smallS=0;
|
||||
vec1=0;
|
||||
for(i=0; i<=krylovsize; ++i)
|
||||
{
|
||||
if(!incore) s0->get(vec2,i);
|
||||
vec1.axpy(smallV(i,0),incore?v0[i]:vec2);
|
||||
}
|
||||
s0->put(vec1,0);
|
||||
vec1.normalize();
|
||||
krylovsize = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
//generate the update vector
|
||||
vec1=0;
|
||||
for(j=0; j<=krylovsize; ++j)
|
||||
{
|
||||
if(!incore) s0->get(vec2,j);
|
||||
vec1.axpy(-r[nroot]*smallV(j,nroot),incore?v0[j]:vec2);
|
||||
if(!incore) s1->get(vec2,j);
|
||||
vec1.axpy(smallV(j,nroot),incore?v1[j]:vec2);
|
||||
}
|
||||
bigmat.diagonalof(vec2);
|
||||
eival_n = r[nroot];
|
||||
for(i=0; i<n; ++i)
|
||||
{
|
||||
T denom = vec2[i] - eival_n;
|
||||
denom = denom<0?-max(0.1,abs(denom)):max(0.1,abs(denom));
|
||||
vec1[i] /= denom;
|
||||
}
|
||||
|
||||
//orthogonalise to previous vectors
|
||||
vec1.normalize();
|
||||
for(j=0; j<=krylovsize; ++j)
|
||||
{
|
||||
typename LA_traits<T>::normtype vnorm;
|
||||
if(!incore) s0->get(vec2,j);
|
||||
do {
|
||||
T ab = vec1*(incore?v0[j]:vec2) /smallS(j,j);
|
||||
vec1.axpy(-ab,incore?v0[j]:vec2);
|
||||
vnorm = vec1.norm();
|
||||
vec1 *= (1./vnorm);
|
||||
} while (vnorm<0.99);
|
||||
}
|
||||
|
||||
//here it is possible to apply some purification procedure if the eivector has to fulfill other conditions
|
||||
//vec1.normalize(); //after the purification
|
||||
|
||||
++krylovsize; //enlarge Krylov space
|
||||
}
|
||||
flag=1;
|
||||
goto finished;
|
||||
|
||||
converged:
|
||||
AuxStorage<typename LA_traits<T>::elementtype> *ev;
|
||||
if(eivecsfile) ev = new AuxStorage<typename LA_traits<T>::elementtype>(eivecsfile);
|
||||
if(verbose) cout << "Davidson converged in "<<it<<" iterations.\n";
|
||||
for(nroot=0; nroot<nroots; ++nroot)
|
||||
{
|
||||
eivals[nroot]=r[nroot];
|
||||
if(eivecs)
|
||||
{
|
||||
vec1=0;
|
||||
for(j=0; j<=krylovsize; ++j )
|
||||
{
|
||||
if(!incore) s0->get(vec2,j);
|
||||
vec1.axpy(smallV(j,nroot),incore?v0[j]:vec2);
|
||||
}
|
||||
vec1.normalize();
|
||||
if(eivecs) eivecs[nroot]|=vec1;
|
||||
if(eivecsfile)
|
||||
{
|
||||
ev->put(vec1,nroot);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(eivecsfile) delete ev;
|
||||
|
||||
finished:
|
||||
if(incore) {delete[] v0; delete[] v1;}
|
||||
else {delete s0; delete s1;}
|
||||
|
||||
if(flag) laerror("no convergence in davidson");
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user