progressing on contfrac

This commit is contained in:
2022-02-18 20:55:37 +01:00
parent 0e8c20770f
commit e67e6a5797
5 changed files with 145 additions and 4 deletions

View File

@@ -29,7 +29,12 @@ namespace LA {
//NOTE: 0 on any position >0 means actually infinity; simplify() shortens the vector
//presently implements just conversion to/from rationals and floats
//maybe implement arithmetic by Gosper's method cf. https://perl.plover.com/classes/cftalk/TALK
//
template <typename T>
class ContFrac;
//@@@basic rational arithmetics
template <typename T>
class Rational {
public:
@@ -37,8 +42,26 @@ public:
T den;
Rational(const T p, const T q) : num(p),den(q) {};
explicit Rational(const T (&a)[2]) :num(a[0]), den(a[1]) {};
Rational(const ContFrac<T> &cf) {cf.convergent(&num,&den);};
};
template <typename T>
std::ostream & operator<<(std::ostream &s, const Rational<T> &x)
{
s<<x.num<<"/"<<x.den;
return s;
}
template <typename T>
class Homographic;
template <typename T>
class BiHomographic;
//@@@implement iterator and rewrite Homographic<T>::value
template <typename T>
class ContFrac : public NRVec<T> {
private:
@@ -50,7 +73,7 @@ public:
ContFrac(const int n) : NRVec<T>(n+1) {};
ContFrac(double x, const int n, const T thres=0); //might yield a non-canonical form
ContFrac(const T p, const T q); //should yield a canonical form
ContFrac(const Rational<T> r) : ContFrac(r.num,r.den) {};
ContFrac(const Rational<T> &r) : ContFrac(r.num,r.den) {};
void canonicalize();
void convergent(T *p, T*q, const int trunc= -1) const;
@@ -64,9 +87,39 @@ public:
NRVec<T>::resize(n+1,preserve);
if(preserve) for(int i=nold+1; i<=n;++i) (*this)[i]=0;
}
ContFrac operator+(const Rational<T> &rhs) const {Homographic<T> h({{rhs.num,rhs.den},{rhs.den,0}}); return h.value(*this);};
ContFrac operator-(const Rational<T> &rhs) const {Homographic<T> h({{-rhs.num,rhs.den},{rhs.den,0}}); return h.value(*this);};
ContFrac operator*(const Rational<T> &rhs) const {Homographic<T> h({{0,rhs.num},{rhs.den,0}}); return h.value(*this);};
ContFrac operator/(const Rational<T> &rhs) const {Homographic<T> h({{0,rhs.den},{rhs.num,0}}); return h.value(*this);};
};
//for Gosper's arithmetic
template <typename T>
class Homographic {
public:
T x[2][2]; //{{a,b},{c,d}} for (a+b.z)/(c+d.z)
Homographic(){};
explicit Homographic(const T (&a)[2][2]) {memcpy(x,a,2*2*sizeof(T));};
ContFrac<T> value(const ContFrac<T>&x) const;
};
template <typename T>
class BiHomographic {
public:
T x[2][2][2];
BiHomographic(){};
explicit BiHomographic(const T (&a)[2][2][2]) {memcpy(x,a,2*2*2*sizeof(T));};
ContFrac<T> value(const ContFrac<T>&x, const ContFrac<T>&y) const;
};
}//namespace