*** empty log message ***

This commit is contained in:
jiri
2020-01-06 20:50:34 +00:00
parent 086c2202be
commit ef02c16f28
7 changed files with 786 additions and 315 deletions

View File

@@ -34,7 +34,7 @@ namespace LA {
template void lawritemat(FILE *file,const T *a,int r,int c,const char *form0, \
int nodim,int modulo, int issym);
INSTANTIZE(double)
INSTANTIZE(complex<double>)
INSTANTIZE(std::complex<double>)
INSTANTIZE(int)
INSTANTIZE(short)
INSTANTIZE(char)
@@ -100,8 +100,8 @@ void lawritemat(FILE *file,const T *a,int r,int c,const char *form0,
ii=j;
jj=i;
}
fprintf(file, f, ((complex<double>)a[ii*(ii+1)/2+jj]).real(), ((complex<double>)a[ii*(ii+1)/2+jj]).imag());
} else fprintf(file, f, ((complex<double>)a[(i-1)*c+j-1]).real(), ((complex<double>)a[(i-1)*c+j-1]).imag());
fprintf(file, f, ((std::complex<double>)a[ii*(ii+1)/2+jj]).real(), ((std::complex<double>)a[ii*(ii+1)/2+jj]).imag());
} else fprintf(file, f, ((std::complex<double>)a[(i-1)*c+j-1]).real(), ((std::complex<double>)a[(i-1)*c+j-1]).imag());
if (j < n2) fputc(' ',file);
}
fprintf(file, "\n");
@@ -120,8 +120,8 @@ void lawritemat(FILE *file,const T *a,int r,int c,const char *form0,
ii=j;
jj=i;
}
fprintf(file, f, ((complex<double>)a[ii*(ii+1)/2+jj]).real(), ((complex<double>)a[ii*(ii+1)/2+jj]).imag());
} else fprintf(file,f,((complex<double>)a[(i-1)*c+j-1]).real(), ((complex<double>)a[(i-1)*c+j-1]).imag());
fprintf(file, f, ((std::complex<double>)a[ii*(ii+1)/2+jj]).real(), ((std::complex<double>)a[ii*(ii+1)/2+jj]).imag());
} else fprintf(file,f,((std::complex<double>)a[(i-1)*c+j-1]).real(), ((std::complex<double>)a[(i-1)*c+j-1]).imag());
putc(j<c?' ':'\n',file);
}
}
@@ -246,7 +246,7 @@ linear_solve_do(a,&B[0],1,a.nrows(),det,n);
extern "C" void FORNAME(zgesv)(const int *N, const int *NRHS, double *A, const int *LDA,
int *IPIV, double *B, const int *LDB, int *INFO);
void linear_solve(NRMat< complex<double> > &A, NRMat< complex<double> > *B, complex<double> *det, int n)
void linear_solve(NRMat< std::complex<double> > &A, NRMat< std::complex<double> > *B, std::complex<double> *det, int n)
{
int r, *ipiv;
@@ -280,7 +280,7 @@ void linear_solve(NRMat< complex<double> > &A, NRMat< complex<double> > *B, comp
//other version of linear solver based on gesvx
//------------------------------------------------------------------------------
extern "C" void FORNAME(zgesvx)(const char *fact, const char *trans, const FINT *n, const FINT *nrhs, complex<double> *A, const FINT *lda, complex<double> *AF, const FINT *ldaf, const FINT *ipiv, char *equed, double *R,double *C, complex<double> *B, const FINT *ldb, complex<double> *X, const FINT *ldx, double *rcond, double *ferr, double *berr, complex<double> *work, double *rwork, FINT *info);
extern "C" void FORNAME(zgesvx)(const char *fact, const char *trans, const FINT *n, const FINT *nrhs, std::complex<double> *A, const FINT *lda, std::complex<double> *AF, const FINT *ldaf, const FINT *ipiv, char *equed, double *R,double *C, std::complex<double> *B, const FINT *ldb, std::complex<double> *X, const FINT *ldx, double *rcond, double *ferr, double *berr, std::complex<double> *work, double *rwork, FINT *info);
extern "C" void FORNAME(dgesvx)(const char *fact, const char *trans, const FINT *n, const FINT *nrhs, double *A, const FINT *lda, double *AF, const FINT *ldaf, const FINT *ipiv, char *equed, double *R,double *C, double *B, const FINT *ldb, double *X, const FINT *ldx, double *rcond, double *ferr, double *berr, double *work, FINT *iwork, FINT *info);
//------------------------------------------------------------------------------
// solves set of linear equations using dgesvx
@@ -369,7 +369,7 @@ int linear_solve_x(NRMat<double> &_A, double *_B, const int _rhsCount, const int
// solution is stored in _B
// the info parameter of dgesvx is returned (see man dgesvx)
//------------------------------------------------------------------------------
int linear_solve_x(NRMat<complex<double> > &_A, complex<double> *_B, const int _rhsCount, const int _eqCount, const bool _eq, const bool _saveA, double *_rcond){
int linear_solve_x(NRMat<std::complex<double> > &_A, std::complex<double> *_B, const int _rhsCount, const int _eqCount, const bool _eq, const bool _saveA, double *_rcond){
const int A_rows = _A.nrows();
const int A_cols = _A.ncols();
@@ -381,8 +381,8 @@ int linear_solve_x(NRMat<complex<double> > &_A, complex<double> *_B, const int _
laerror("linear_solve_x: invalid input matrices");
}
complex<double> *A;
complex<double> * const _A_data = (complex<double>*)_A;
std::complex<double> *A;
std::complex<double> * const _A_data = (std::complex<double>*)_A;
FINT info;
const FINT nrhs = _rhsCount;
@@ -393,17 +393,17 @@ int linear_solve_x(NRMat<complex<double> > &_A, complex<double> *_B, const int _
double rcond;
double ferr[nrhs], berr[nrhs];
double R[n], C[n], rwork[2*n];
complex<double> work[2*n];
std::complex<double> work[2*n];
FINT *const ipiv = new FINT[n];
complex<double> *X = new complex<double>[n*nrhs];
complex<double> *AF = new complex<double>[ldaf*n];
std::complex<double> *X = new std::complex<double>[n*nrhs];
std::complex<double> *AF = new std::complex<double>[ldaf*n];
A = _A_data;
if(_eq){
if(_saveA){//store the corresponding submatrix of _A (not needed provided fact=='N')
A = new complex<double>[n*n];
A = new std::complex<double>[n*n];
int offset1 = 0;int offset2 = 0;
for(register int i=0;i<n;i++){
cblas_zcopy(n, _A_data + offset1, 1, A + offset2, 1);
@@ -441,7 +441,8 @@ int linear_solve_x(NRMat<complex<double> > &_A, complex<double> *_B, const int _
// solution is stored in _B
// the info parameter of dgesvx is returned (see man dgesvx)
//------------------------------------------------------------------------------
int multiply_by_inverse(NRMat<double> &_A, NRMat<double> &_B, bool _useEq, double *_rcond){
template<>
int multiply_by_inverse<double>(NRMat<double> &_A, NRMat<double> &_B, bool _useEq, double *_rcond){
const FINT n = _A.nrows();
const FINT m = _A.ncols();
@@ -492,7 +493,8 @@ int multiply_by_inverse(NRMat<double> &_A, NRMat<double> &_B, bool _useEq, doubl
// solution is stored in _B
// the info parameter of zgesvx is returned (see man zgesvx)
//------------------------------------------------------------------------------
int multiply_by_inverse(NRMat<complex<double> > &_A, NRMat<complex<double> > &_B, bool _useEq, double *_rcond){
template<>
int multiply_by_inverse<std::complex<double> >(NRMat<std::complex<double> > &_A, NRMat<std::complex<double> > &_B, bool _useEq, double *_rcond){
const FINT n = _A.nrows();
const FINT m = _A.ncols();
@@ -505,20 +507,20 @@ int multiply_by_inverse(NRMat<complex<double> > &_A, NRMat<complex<double> > &_B
const char trans = 'N';//because of c-order
char equed = 'B';//if fact=='N' then equed is an output argument, therefore not declared as const
complex<double> * const A = (complex<double>*)_A;
complex<double> * const B = (complex<double>*)_B;
std::complex<double> * const A = (std::complex<double>*)_A;
std::complex<double> * const B = (std::complex<double>*)_B;
_B.copyonwrite();//even if fact='N', call copyonwrite because the solution is going to be stored in _B
FINT info;
double rcond;
double ferr[n], berr[n];
double R[n], C[n], rwork[2*n];
complex<double> work[2*n];
std::complex<double> work[2*n];
FINT *const ipiv = new FINT[n];
complex<double> *X = new complex<double>[n2];
complex<double> *AF = new complex<double>[n2];
std::complex<double> *X = new std::complex<double>[n2];
std::complex<double> *AF = new std::complex<double>[n2];
FORNAME(zgesvx)(&fact, &trans, &n, &n, B, &n, AF, &n, &ipiv[0], &equed, &R[0], &C[0], A, &n, X, &n, &rcond, ferr, berr, work, rwork, &info);
@@ -599,15 +601,15 @@ void diagonalize(NRMat<double> &a, NRVec<double> &w, const bool eivec,
extern "C" void FORNAME(zheev)(const char *JOBZ, const char *UPLO, const FINT *N,
complex<double> *A, const FINT *LDA, double *W, complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO);
std::complex<double> *A, const FINT *LDA, double *W, std::complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO);
extern "C" void FORNAME(zhegv)(const FINT *ITYPE, const char *JOBZ, const char *UPLO, const FINT *N,
complex<double> *A, const FINT *LDA, complex<double> *B, const FINT *LDB, double *W, complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO);
std::complex<double> *A, const FINT *LDA, std::complex<double> *B, const FINT *LDB, double *W, std::complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO);
// a will contain eigenvectors (columns if corder==1), w eigenvalues
void diagonalize(NRMat<complex<double> > &a, NRVec<double> &w, const bool eivec,
const bool corder, int n, NRMat<complex<double> > *b, const int itype)
void diagonalize(NRMat<std::complex<double> > &a, NRVec<double> &w, const bool eivec,
const bool corder, int n, NRMat<std::complex<double> > *b, const int itype)
{
FINT m = a.nrows();
if (m != a.ncols()) laerror("diagonalize() call with non-square matrix");
@@ -626,7 +628,7 @@ void diagonalize(NRMat<complex<double> > &a, NRVec<double> &w, const bool eivec,
char vectors = LAPACK_FORTRANCASE('V');
if (!eivec) vectors = LAPACK_FORTRANCASE('n');
FINT LWORK = -1;
complex<double> WORKX;
std::complex<double> WORKX;
FINT ldb=0; if(b) ldb=b->ncols();
std::cout << "test vectors "<<vectors<<std::endl;
@@ -643,7 +645,7 @@ std::cout << "test vectors "<<vectors<<std::endl;
#endif
LWORK = (FINT)WORKX.real();
complex<double> *WORK = new complex<double>[LWORK];
std::complex<double> *WORK = new std::complex<double>[LWORK];
#ifdef FORINT
if(b) FORNAME(zhegv)(&itypetmp,&vectors, &U, &ntmp, a, &m, *b, &ldb, w, &WORKX, &LWORK, RWORK, &r );
@@ -710,15 +712,15 @@ void diagonalize(NRSMat<double> &a, NRVec<double> &w, NRMat<double> *v,
extern "C" void FORNAME(zhpev)(const char *JOBZ, const char *UPLO, const FINT *N,
complex<double> *AP, double *W, complex<double> *Z, const FINT *LDZ, complex<double> *WORK, double *RWORK, FINT *INFO);
std::complex<double> *AP, double *W, std::complex<double> *Z, const FINT *LDZ, std::complex<double> *WORK, double *RWORK, FINT *INFO);
extern "C" void FORNAME(zhpgv)(const FINT *ITYPE, const char *JOBZ, const char *UPLO, const FINT *N,
complex<double> *AP, complex<double> *BP, double *W, complex<double> *Z, const FINT *LDZ, complex<double> *WORK, double *RWORK, FINT *INFO);
std::complex<double> *AP, std::complex<double> *BP, double *W, std::complex<double> *Z, const FINT *LDZ, std::complex<double> *WORK, double *RWORK, FINT *INFO);
// v will contain eigenvectors, w eigenvalues
void diagonalize(NRSMat<complex<double> > &a, NRVec<double> &w, NRMat<complex<double> > *v,
const bool corder, int n, NRSMat<complex<double> > *b, const int itype)
void diagonalize(NRSMat<std::complex<double> > &a, NRVec<double> &w, NRMat<std::complex<double> > *v,
const bool corder, int n, NRSMat<std::complex<double> > *b, const int itype)
{
if(n<=0) n = a.nrows();
if (v) if (v->nrows() != v ->ncols() || n > v->nrows() || n > a.nrows())
@@ -736,17 +738,17 @@ void diagonalize(NRSMat<complex<double> > &a, NRVec<double> &w, NRMat<complex<do
char U = LAPACK_FORTRANCASE('u');
char job = LAPACK_FORTRANCASE(v ? 'v' : 'n');
complex<double> *WORK = new complex<double>[2*n];
std::complex<double> *WORK = new std::complex<double>[2*n];
double *RWORK = new double[3*n];
FINT ldv=v?v->ncols():n;
#ifdef FORINT
const FINT itypetmp = itype;
FINT ntmp = n;
if(b) FORNAME(zhpgv)(&itypetmp,&job, &U, &ntmp, a, *b, w, v?(*v)[0]:(complex<double> *)0, &ldv, WORK, RWORK, &r );
else FORNAME(zhpev)(&job, &U, &ntmp, a, w, v?(*v)[0]:(complex<double> *)0, &ldv, WORK, RWORK, &r );
if(b) FORNAME(zhpgv)(&itypetmp,&job, &U, &ntmp, a, *b, w, v?(*v)[0]:(std::complex<double> *)0, &ldv, WORK, RWORK, &r );
else FORNAME(zhpev)(&job, &U, &ntmp, a, w, v?(*v)[0]:(std::complex<double> *)0, &ldv, WORK, RWORK, &r );
#else
if(b) FORNAME(zhpgv)(&itype,&job, &U, &n, a, *b, w, v?(*v)[0]:(complex<double> *)0, &ldv, WORK, RWORK, &r );
else FORNAME(zhpev)(&job, &U, &n, a, w, v?(*v)[0]:(complex<double> *)0, &ldv, WORK, RWORK, &r );
if(b) FORNAME(zhpgv)(&itype,&job, &U, &n, a, *b, w, v?(*v)[0]:(std::complex<double> *)0, &ldv, WORK, RWORK, &r );
else FORNAME(zhpev)(&job, &U, &n, a, w, v?(*v)[0]:(std::complex<double> *)0, &ldv, WORK, RWORK, &r );
#endif
delete[] WORK;
delete[] RWORK;
@@ -824,11 +826,11 @@ void singular_decomposition(NRMat<double> &a, NRMat<double> *u, NRVec<double> &s
extern "C" void FORNAME(zgesvd)(const char *JOBU, const char *JOBVT, const FINT *M,
const FINT *N, complex<double> *A, const FINT *LDA, double *S, complex<double> *U, const FINT *LDU,
complex<double> *VT, const FINT *LDVT, complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO );
const FINT *N, std::complex<double> *A, const FINT *LDA, double *S, std::complex<double> *U, const FINT *LDU,
std::complex<double> *VT, const FINT *LDVT, std::complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO );
void singular_decomposition(NRMat<complex<double> > &a, NRMat<complex<double> > *u, NRVec<double> &s,
NRMat<complex<double> > *v, const bool vnotdagger, int m, int n)
void singular_decomposition(NRMat<std::complex<double> > &a, NRMat<std::complex<double> > *u, NRVec<double> &s,
NRMat<std::complex<double> > *v, const bool vnotdagger, int m, int n)
{
FINT m0 = a.nrows();
FINT n0 = a.ncols();
@@ -852,7 +854,7 @@ void singular_decomposition(NRMat<complex<double> > &a, NRMat<complex<double> >
// v should be transposed at the end
char jobu = u ? 'A' : 'N';
char jobv = v ? 'A' : 'N';
complex<double> work0;
std::complex<double> work0;
FINT lwork = -1;
FINT r;
double *rwork = new double[5*nmin];
@@ -868,7 +870,7 @@ void singular_decomposition(NRMat<complex<double> > &a, NRMat<complex<double> >
#endif
lwork = (FINT) work0.real();
complex<double> *work = new complex<double>[lwork];
std::complex<double> *work = new std::complex<double>[lwork];
#ifdef FORINT
FORNAME(zgesvd)(&jobv, &jobu, &ntmp, &mtmp, a, &n0, s, v?(*v)[0]:0, &n0,
@@ -904,14 +906,14 @@ extern "C" void FORNAME(dggev)(const char *JOBVL, const char *JOBVR, const FINT
double *WORK, const FINT *LWORK, FINT *INFO );
extern "C" void FORNAME(zgeev)(const char *JOBVL, const char *JOBVR, const FINT *N,
complex<double> *A, const FINT *LDA, complex<double> *W, complex<double> *VL, const FINT *LDVL,
complex<double> *VR, const FINT *LDVR, complex<double> *WORK, const FINT *LWORK,
std::complex<double> *A, const FINT *LDA, std::complex<double> *W, std::complex<double> *VL, const FINT *LDVL,
std::complex<double> *VR, const FINT *LDVR, std::complex<double> *WORK, const FINT *LWORK,
double *RWORK, FINT *INFO );
extern "C" void FORNAME(zggev)(const char *JOBVL, const char *JOBVR, const FINT *N,
complex<double> *A, const FINT *LDA, complex<double> *B, const FINT *LDB, complex<double> *W, complex<double> *WBETA,
complex<double> *VL, const FINT *LDVL, complex<double> *VR, const FINT *LDVR,
complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO );
std::complex<double> *A, const FINT *LDA, std::complex<double> *B, const FINT *LDB, std::complex<double> *W, std::complex<double> *WBETA,
std::complex<double> *VL, const FINT *LDVL, std::complex<double> *VR, const FINT *LDVR,
std::complex<double> *WORK, const FINT *LWORK, double *RWORK, FINT *INFO );
@@ -1124,10 +1126,10 @@ void gdiagonalize(NRMat<double> &a, NRVec<double> &wr, NRVec<double> &wi,
//most general complex routine
template<>
void gdiagonalize(NRMat<complex<double> > &a, NRVec< complex<double> > &w,
NRMat< complex<double> >*vl, NRMat< complex<double> > *vr,
void gdiagonalize(NRMat<std::complex<double> > &a, NRVec< std::complex<double> > &w,
NRMat< std::complex<double> >*vl, NRMat< std::complex<double> > *vr,
const bool corder, int n, const int sorttype, const int biorthonormalize,
NRMat<complex<double> > *b, NRVec<complex<double> > *beta)
NRMat<std::complex<double> > *b, NRVec<std::complex<double> > *beta)
{
if(n<=0) {n = a.nrows(); if(a.ncols()!=a.nrows() ) laerror("gdiagonalize() call for a non-square matrix");}
@@ -1152,7 +1154,7 @@ void gdiagonalize(NRMat<complex<double> > &a, NRVec< complex<double> > &w,
char jobvl = LAPACK_FORTRANCASE(vl ? 'v' : 'n');
char jobvr = LAPACK_FORTRANCASE(vr ? 'v' : 'n');
complex<double> work0;
std::complex<double> work0;
FINT lwork = -1;
FINT r;
FINT lda=a.ncols();
@@ -1165,30 +1167,30 @@ void gdiagonalize(NRMat<complex<double> > &a, NRVec< complex<double> > &w,
#ifdef FORINT
FINT ntmp = n;
if(b) FORNAME(zggev)(&jobvr, &jobvl, &ntmp, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &ntmp, a, &lda, w, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
if(b) FORNAME(zggev)(&jobvr, &jobvl, &ntmp, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(std::complex<double> *)0,
&ldvr, vl?vl[0]:(std::complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &ntmp, a, &lda, w, vr?vr[0]:(std::complex<double> *)0,
&ldvr, vl?vl[0]:(std::complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
#else
if(b) FORNAME(zggev)(&jobvr, &jobvl, &n, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &n, a, &lda, w, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
if(b) FORNAME(zggev)(&jobvr, &jobvl, &n, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(std::complex<double> *)0,
&ldvr, vl?vl[0]:(std::complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &n, a, &lda, w, vr?vr[0]:(std::complex<double> *)0,
&ldvr, vl?vl[0]:(std::complex<double> *)0, &ldvl, &work0, &lwork, rwork, &r);
#endif
lwork = (FINT) work0.real();
complex<double> *work = new complex<double>[lwork];
std::complex<double> *work = new std::complex<double>[lwork];
#ifdef FORINT
if(b) FORNAME(zggev)(&jobvr, &jobvl, &ntmp, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &ntmp, a, &lda, w, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
if(b) FORNAME(zggev)(&jobvr, &jobvl, &ntmp, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(std::complex<double> *)0,
&ldvr, vl?vl[0]:(std::complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &ntmp, a, &lda, w, vr?vr[0]:(std::complex<double> *)0,
&ldvr, vl?vl[0]:(std::complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
#else
if(b) FORNAME(zggev)(&jobvr, &jobvl, &n, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &n, a, &lda, w, vr?vr[0]:(complex<double> *)0,
&ldvr, vl?vl[0]:(complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
if(b) FORNAME(zggev)(&jobvr, &jobvl, &n, a, &lda, *b, &ldb, w, *beta, vr?vr[0]:(std::complex<double> *)0,
&ldvr, vl?vl[0]:(std::complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
else FORNAME(zgeev)(&jobvr, &jobvl, &n, a, &lda, w, vr?vr[0]:(std::complex<double> *)0,
&ldvr, vl?vl[0]:(std::complex<double> *)0, &ldvl, work, &lwork, rwork, &r);
#endif
delete[] work;
@@ -1205,7 +1207,7 @@ void gdiagonalize(NRMat<complex<double> > &a, NRVec< complex<double> > &w,
for(int i=0; i<n; ++i)
{
//calculate scaling paramter
complex<double> tmp;
std::complex<double> tmp;
cblas_zdotc_sub(n,(*vr)[i],1,(*vl)[i], 1, &tmp);
tmp = 1./tmp;
std::cout <<"scaling by "<<tmp<<"\n";
@@ -1229,8 +1231,8 @@ void gdiagonalize(NRMat<complex<double> > &a, NRVec< complex<double> > &w,
template<>
void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
NRMat< complex<double> >*vl, NRMat< complex<double> > *vr,
void gdiagonalize(NRMat<double> &a, NRVec< std::complex<double> > &w,
NRMat< std::complex<double> >*vl, NRMat< std::complex<double> > *vr,
const bool corder, int n, const int sorttype, const int biorthonormalize,
NRMat<double> *b, NRVec<double> *beta)
{
@@ -1246,7 +1248,7 @@ void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
//process the results into complex matrices
int i;
for (i=0; i<n; i++) w[i] = complex<double>(wr[i], wi[i]);
for (i=0; i<n; i++) w[i] = std::complex<double>(wr[i], wi[i]);
if (rvl || rvr) {
i = 0;
while (i < n) {
@@ -1267,26 +1269,26 @@ void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
for (int j=0; j<n; j++) {
if(corder)
{
(*vl)[j][i] = complex<double>((*rvl)[i][j], (*rvl)[i+1][j]);
(*vl)[j][i+1] = complex<double>((*rvl)[i][j], -(*rvl)[i+1][j]);
(*vl)[j][i] = std::complex<double>((*rvl)[i][j], (*rvl)[i+1][j]);
(*vl)[j][i+1] = std::complex<double>((*rvl)[i][j], -(*rvl)[i+1][j]);
}
else
{
(*vl)[i][j] = complex<double>((*rvl)[i][j], (*rvl)[i+1][j]);
(*vl)[i+1][j] = complex<double>((*rvl)[i][j], -(*rvl)[i+1][j]);
(*vl)[i][j] = std::complex<double>((*rvl)[i][j], (*rvl)[i+1][j]);
(*vl)[i+1][j] = std::complex<double>((*rvl)[i][j], -(*rvl)[i+1][j]);
}
}
if (vr)
for (int j=0; j<n; j++) {
if(corder)
{
(*vr)[j][i] = complex<double>((*rvr)[i][j], (*rvr)[i+1][j]);
(*vr)[j][i+1] = complex<double>((*rvr)[i][j], -(*rvr)[i+1][j]);
(*vr)[j][i] = std::complex<double>((*rvr)[i][j], (*rvr)[i+1][j]);
(*vr)[j][i+1] = std::complex<double>((*rvr)[i][j], -(*rvr)[i+1][j]);
}
else
{
(*vr)[i][j] = complex<double>((*rvr)[i][j], (*rvr)[i+1][j]);
(*vr)[i+1][j] = complex<double>((*rvr)[i][j], -(*rvr)[i+1][j]);
(*vr)[i][j] = std::complex<double>((*rvr)[i][j], (*rvr)[i+1][j]);
(*vr)[i+1][j] = std::complex<double>((*rvr)[i][j], -(*rvr)[i+1][j]);
}
}
i += 2;
@@ -1299,7 +1301,7 @@ void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
template<>
const NRMat<double> realpart<NRMat< complex<double> > >(const NRMat< complex<double> > &a)
const NRMat<double> realpart<NRMat< std::complex<double> > >(const NRMat< std::complex<double> > &a)
{
NRMat<double> result(a.nrows(), a.ncols());
@@ -1317,7 +1319,7 @@ const NRMat<double> realpart<NRMat< complex<double> > >(const NRMat< complex<dou
}
template<>
const NRMat<double> imagpart<NRMat< complex<double> > >(const NRMat< complex<double> > &a)
const NRMat<double> imagpart<NRMat< std::complex<double> > >(const NRMat< std::complex<double> > &a)
{
NRMat<double> result(a.nrows(), a.ncols());
@@ -1336,17 +1338,17 @@ const NRMat<double> imagpart<NRMat< complex<double> > >(const NRMat< complex<dou
}
template<>
const NRMat< complex<double> > realmatrix<NRMat<double> > (const NRMat<double> &a)
const NRMat< std::complex<double> > realmatrix<NRMat<double> > (const NRMat<double> &a)
{
NRMat <complex<double> > result(a.nrows(), a.ncols());
NRMat <std::complex<double> > result(a.nrows(), a.ncols());
#ifdef CUDALA
if(a.location == cpu){
#endif
// NRMat <complex<double> > result(a.nrows(), a.ncols());
// NRMat <std::complex<double> > result(a.nrows(), a.ncols());
cblas_dcopy(a.nrows()*a.ncols(), a, 1, (double *)result[0], 2);
#ifdef CUDALA
}else{
@@ -1358,15 +1360,15 @@ const NRMat< complex<double> > realmatrix<NRMat<double> > (const NRMat<double> &
}
template<>
const NRMat< complex<double> > imagmatrix<NRMat<double> > (const NRMat<double> &a)
const NRMat< std::complex<double> > imagmatrix<NRMat<double> > (const NRMat<double> &a)
{
NRMat< complex<double> > result(a.nrows(), a.ncols());
NRMat< std::complex<double> > result(a.nrows(), a.ncols());
#ifdef CUDALA
if(a.location == cpu){
#endif
// NRMat< complex<double> > result(a.nrows(), a.ncols());
// NRMat< std::complex<double> > result(a.nrows(), a.ncols());
cblas_dcopy(a.nrows()*a.ncols(), a, 1, (double *)result[0]+1, 2);
#ifdef CUDALA
}else{
@@ -1378,20 +1380,20 @@ const NRMat< complex<double> > imagmatrix<NRMat<double> > (const NRMat<double> &
}
template<>
const NRMat< complex<double> > complexmatrix<NRMat<double> > (const NRMat<double> &re, const NRMat<double> &im)
const NRMat< std::complex<double> > complexmatrix<NRMat<double> > (const NRMat<double> &re, const NRMat<double> &im)
{
if(re.nrows()!=im.nrows() || re.ncols() != im.ncols()) laerror("incompatible sizes of real and imaginary parts");
NRMat< complex<double> > result(re.nrows(), re.ncols());
NRMat< std::complex<double> > result(re.nrows(), re.ncols());
cblas_dcopy(re.nrows()*re.ncols(), re, 1, (double *)result[0], 2);
cblas_dcopy(re.nrows()*re.ncols(), im, 1, (double *)result[0]+1, 2);
return result;
}
template<>
const SparseSMat< complex<double> > complexmatrix<SparseSMat<double> >(const SparseSMat<double> &re, const SparseSMat<double> &im) {
const SparseSMat< std::complex<double> > complexmatrix<SparseSMat<double> >(const SparseSMat<double> &re, const SparseSMat<double> &im) {
if(re.nrows()!=im.nrows() || re.ncols() != im.ncols()) laerror("incompatible sizes of real and imaginary parts");
SparseSMat< complex<double> > result(re.nrows(),re.ncols());
complex<double> tmp;
SparseSMat< std::complex<double> > result(re.nrows(),re.ncols());
std::complex<double> tmp;
SparseSMat<double>::iterator pre(re);
for(; pre.notend(); ++pre) {
@@ -1401,7 +1403,7 @@ const SparseSMat< complex<double> > complexmatrix<SparseSMat<double> >(const Spa
SparseSMat<double>::iterator pim(im);
for(; pim.notend(); ++pim) {
tmp = complex<double>(0,1)*(pim->elem);
tmp = std::complex<double>(0,1)*(pim->elem);
result.add(pim->row,pim->col,tmp,false);
}
@@ -1409,9 +1411,9 @@ const SparseSMat< complex<double> > complexmatrix<SparseSMat<double> >(const Spa
}
template<>
const SparseSMat< complex<double> > realmatrix<SparseSMat<double> >(const SparseSMat<double> &re) {
SparseSMat< complex<double> > result(re.nrows(),re.ncols());
complex<double> tmp;
const SparseSMat< std::complex<double> > realmatrix<SparseSMat<double> >(const SparseSMat<double> &re) {
SparseSMat< std::complex<double> > result(re.nrows(),re.ncols());
std::complex<double> tmp;
SparseSMat<double>::iterator pre(re);
for(; pre.notend(); ++pre) {
@@ -1423,14 +1425,14 @@ const SparseSMat< complex<double> > realmatrix<SparseSMat<double> >(const Sparse
}
template<>
const SparseSMat< complex<double> > imagmatrix<SparseSMat<double> >(const SparseSMat<double> &im) {
SparseSMat< complex<double> > result(im.nrows(),im.ncols());
complex<double> tmp;
const SparseSMat< std::complex<double> > imagmatrix<SparseSMat<double> >(const SparseSMat<double> &im) {
SparseSMat< std::complex<double> > result(im.nrows(),im.ncols());
std::complex<double> tmp;
SparseSMat<double>::iterator pim(im);
for(; pim.notend(); ++pim) {
tmp = complex<double>(0,1)*(pim->elem);
tmp = std::complex<double>(0,1)*(pim->elem);
result.add(pim->row,pim->col,tmp,false);
}
@@ -1456,7 +1458,7 @@ NRMat<double> realmatrixfunction(NRMat<double> a, double (*f) (const double))
}
NRMat<complex<double> > complexmatrixfunction(NRMat<double> a, double (*fre) (const double), double (*fim) (const double))
NRMat<std::complex<double> > complexmatrixfunction(NRMat<double> a, double (*fre) (const double), double (*fim) (const double))
{
int n = a.nrows();
NRVec<double> wre(n),wim(n);
@@ -1470,8 +1472,8 @@ NRMat<complex<double> > complexmatrixfunction(NRMat<double> a, double (*fre) (co
NRMat<double> t(n,n),tt(n,n);
t.gemm(0.0, u, 't', a, 'n', 1.0);
tt.gemm(0.0, u, 't', b, 'n', 1.0);
NRMat<complex<double> > r(n, n);
for (int i=0; i<a.nrows(); i++) for(int j=0; j<a.ncols(); ++j) r(i,j)=complex<double>(t(i,j),tt(i,j));
NRMat<std::complex<double> > r(n, n);
for (int i=0; i<a.nrows(); i++) for(int j=0; j<a.ncols(); ++j) r(i,j)=std::complex<double>(t(i,j),tt(i,j));
return r;
}
@@ -1480,7 +1482,7 @@ NRMat<complex<double> > complexmatrixfunction(NRMat<double> a, double (*fre) (co
// instantize template to an addresable function
complex<double> myccopy (const complex<double> &x)
std::complex<double> myccopy (const std::complex<double> &x)
{
return x;
}
@@ -1490,18 +1492,18 @@ double mycopy (const double x)
return x;
}
complex<double> myclog (const complex<double> &x)
std::complex<double> myclog (const std::complex<double> &x)
{
return log(x);
}
complex<double> mycexp (const complex<double> &x)
std::complex<double> mycexp (const std::complex<double> &x)
{
return std::exp(x);
}
complex<double> sqrtinv (const complex<double> &x)
std::complex<double> sqrtinv (const std::complex<double> &x)
{
return 1./std::sqrt(x);
}
@@ -1517,7 +1519,7 @@ NRMat<double> log(const NRMat<double> &a)
return matrixfunction(a, &myclog);
}
NRMat<complex<double> > log(const NRMat<complex<double> > &a)
NRMat<std::complex<double> > log(const NRMat<std::complex<double> > &a)
{
return matrixfunction(a, &myclog);
}
@@ -1528,12 +1530,12 @@ NRMat<double> exp0(const NRMat<double> &a)
return matrixfunction(a, &mycexp);
}
NRMat<complex<double> > exp0(const NRMat<complex<double> > &a)
NRMat<std::complex<double> > exp0(const NRMat<std::complex<double> > &a)
{
return matrixfunction(a, &mycexp);
}
NRMat<complex<double> > copytest(const NRMat<complex<double> > &a)
NRMat<std::complex<double> > copytest(const NRMat<std::complex<double> > &a)
{
return matrixfunction(a, &myccopy);
}
@@ -1565,13 +1567,13 @@ const NRVec<double> diagofproduct(const NRMat<double> &a, const NRMat<double> &b
}
const NRVec< complex<double> > diagofproduct(const NRMat< complex<double> > &a,
const NRMat< complex<double> > &b, bool trb, bool conjb)
const NRVec< std::complex<double> > diagofproduct(const NRMat< std::complex<double> > &a,
const NRMat< std::complex<double> > &b, bool trb, bool conjb)
{
if (trb && (a.nrows() != b.nrows() || a.ncols() != b.ncols()) ||
!trb && (a.nrows() != b.ncols() || a.ncols() != b.nrows()))
laerror("incompatible Mats in diagofproduct<complex>()");
NRVec< complex<double> > result(a.nrows());
NRVec< std::complex<double> > result(a.nrows());
if (trb) {
if (conjb) {
for(int i=0; i<a.nrows(); i++)
@@ -1608,16 +1610,16 @@ double trace2(const NRMat<double> &a, const NRMat<double> &b, bool trb)
}
// LV
complex<double> trace2(const NRMat<complex<double> > &a, const NRMat<complex<double> > &b, bool adjb)
std::complex<double> trace2(const NRMat<std::complex<double> > &a, const NRMat<std::complex<double> > &b, bool adjb)
{
if (adjb && (a.nrows() != b.nrows() || a.ncols() != b.ncols()) ||
!adjb && (a.nrows() != b.ncols() || a.ncols() != b.nrows()))
laerror("incompatible Mats in trace2()");
complex<double> dot;
std::complex<double> dot;
if (adjb) { cblas_zdotc_sub(a.nrows()*a.ncols(), b, 1, a, 1, &dot); return dot; }
complex<double> sum = complex<double>(0.,0.);
std::complex<double> sum = std::complex<double>(0.,0.);
for (int i=0; i<a.nrows(); i++) {
cblas_zdotu_sub(a.ncols(), a[i], 1, b[0]+i, b.ncols(), &dot);
sum += dot;
@@ -1659,7 +1661,7 @@ return trace2(b,a,diagscaled);
//Cholesky interface
extern "C" void FORNAME(dpotrf)(const char *UPLO, const FINT *N, double *A, const FINT *LDA, FINT *INFO);
extern "C" void FORNAME(zpotrf)(const char *UPLO, const FINT *N, complex<double> *A, const FINT *LDA, FINT *INFO);
extern "C" void FORNAME(zpotrf)(const char *UPLO, const FINT *N, std::complex<double> *A, const FINT *LDA, FINT *INFO);
void cholesky(NRMat<double> &a, bool upper)
{
@@ -1680,7 +1682,7 @@ else
}
void cholesky(NRMat<complex<double> > &a, bool upper)
void cholesky(NRMat<std::complex<double> > &a, bool upper)
{
if(a.nrows()!=a.ncols()) laerror("matrix must be square in Cholesky");
FINT lda=a.ncols();
@@ -1700,10 +1702,10 @@ else
//various norms
extern "C" double FORNAME(zlange)( const char *NORM, const FINT *M, const FINT *N, complex<double> *A, const FINT *LDA, double *WORK);
extern "C" double FORNAME(zlange)( const char *NORM, const FINT *M, const FINT *N, std::complex<double> *A, const FINT *LDA, double *WORK);
extern "C" double FORNAME(dlange)( const char *NORM, const FINT *M, const FINT *N, double *A, const FINT *LDA, double *WORK);
double MatrixNorm(NRMat<complex<double> > &A, const char norm)
double MatrixNorm(NRMat<std::complex<double> > &A, const char norm)
{
const char TypNorm = (tolower(norm) == 'o')?'I':'O'; //switch c-order/fortran-order
const FINT M = A.nrows();
@@ -1726,23 +1728,23 @@ double MatrixNorm(NRMat<double > &A, const char norm)
//condition number
extern "C" void FORNAME(zgecon)( const char *norm, const FINT *n, complex<double> *A, const FINT *LDA, const double *anorm, double *rcond, complex<double> *work, double *rwork, FINT *info);
extern "C" void FORNAME(zgecon)( const char *norm, const FINT *n, std::complex<double> *A, const FINT *LDA, const double *anorm, double *rcond, std::complex<double> *work, double *rwork, FINT *info);
extern "C" void FORNAME(dgecon)( const char *norm, const FINT *n, double *A, const FINT *LDA, const double *anorm, double *rcond, double *work, double *rwork, FINT *info);
double CondNumber(NRMat<complex<double> > &A, const char norm)
double CondNumber(NRMat<std::complex<double> > &A, const char norm)
{
const char TypNorm = (tolower(norm) == 'o')?'I':'O'; //switch c-order/fortran-order
const FINT N = A.nrows();
double Norma(0.0), ret(0.0);
FINT info;
complex<double> *work;
std::complex<double> *work;
double *rwork;
if(N != A.ncols()){
laerror("nonsquare matrix in zgecon");
return 0.0;
}
work = new complex<double>[2*N];
work = new std::complex<double>[2*N];
rwork = new double[2*N];
Norma = MatrixNorm(A, norm);