*** empty log message ***

This commit is contained in:
jiri
2020-01-06 20:50:34 +00:00
parent 086c2202be
commit ef02c16f28
7 changed files with 786 additions and 315 deletions

View File

@@ -85,8 +85,12 @@ public:
Quaternion commutator(const Quaternion &rhs) const {return *this * rhs - rhs * *this;}; //could be made more efficient
Quaternion anticommutator(const Quaternion &rhs) const {return *this * rhs + rhs * *this;}; //could be made more efficient
//some conversions
void normquat2euler(T *) const; //"euler" or Tait-Bryan angles [corresponding to meul -r -T xyz -d -t -R]
//some conversions (for all 12 cases of euler angles go via rotation matrices), cf. also the 1977 NASA paper
void normquat2eulerzyx(T *eul) const; //corresponds to [meul -r -T xyz -d -t -R] or euler2rotmat(...,"xyz",true,true,true)
void euler2normquat(const T *eul, const char *type);
void normquat2euler(T *eul, const char *type) const;
inline void eulerzyx2normquat(const T *eul) {euler2normquat(eul,"zyx");};
//@quaternion to euler via rotation matrix
void axis2normquat(const T *axis, const T &angle);
void normquat2axis(T *axis, T &angle) const;
@@ -98,8 +102,9 @@ public:
};
//stream I/O
//stream I/O ... cannot be moved to .cc, since we do e.g. Quaternion<NRMat<double>>>
#ifndef AVOID_STDSTREAM
template <typename T>
std::istream& operator>>(std::istream &s, Quaternion<T> &x)
{
@@ -110,8 +115,10 @@ s >> x.q[3];
return s;
}
template <typename T>
std::ostream& operator<<(std::ostream &s, const Quaternion<T> &x) {
std::ostream& operator<<(std::ostream &s, const Quaternion<T> &x)
{
s << x.q[0]<<" ";
s << x.q[1]<<" ";
s << x.q[2]<<" ";
@@ -124,11 +131,24 @@ return s;
//the following must be in .h due to the generic M type which is unspecified and can be any type providing [][], either plain C matrix, Mat3 class, or std::matrix or LA matrix NRMat
//maybe we go via T* and recast it to T (*)[3] and move this to .cc to avoid replication of the code in multiple object files?
//conversion between quanternions and rotation matrices
//conversion from normalized quaternion to SU(2) matrix (+/- q yields different SU(2) element)
template<typename T, typename M>
void normquat2su2mat(const Quaternion<T> &q, M &a)
{
a[0][0] = std::complex<T>(q[0],q[1]);
a[0][1] = std::complex<T>(q[2],q[3]);
a[1][0] = std::complex<T>(-q[2],q[3]);
a[1][1] = std::complex<T>(q[0],-q[1]);
}
//use transpose option to match nasa paper definition
//conversion between quanternions and rotation matrices (+/- q yields the same rotation)
//
template<typename T, typename M>
void normquat2rotmat(const Quaternion<T> &q, M &a)
void normquat2rotmat(const Quaternion<T> &q, M &a, bool transpose=false)
{
//some explicit common subexpression optimizations
{
@@ -149,24 +169,34 @@ T q12= q[1]*q[2];
T q13= q[1]*q[3];
T q23= q[2]*q[3];
if(transpose) //effectively sign change of the temporaries
{
q01 = -q01;
q02 = -q03;
q03 = -q02;
}
a[0][1] = 2*(q12+q03);
a[0][2] = 2*(q13-q02);
a[1][0] = 2*(q12-q03);
a[1][2] = 2*(q23+q01);
a[0][2] = 2*(q13-q02);
a[2][0] = 2*(q13+q02);
a[1][2] = 2*(q23+q01);
a[2][1] = 2*(q23-q01);
}
//transpose option to match nasa
template<typename T, typename M>
void quat2rotmat(Quaternion<T> q, M &a, const bool already_normalized=false)
void quat2rotmat(Quaternion<T> q, M &a, bool transpose=false, const bool already_normalized=false)
{
if(!already_normalized) q.normalize();
normquat2rotmat(q,a);
normquat2rotmat(q,a,transpose);
}
//use transpose option to match nasa
//derivative of the rotation matrix by quaternion elements
template<typename T, typename M>
void normquat2rotmatder(const Quaternion<T> &q, Quaternion<M> &a)
void normquat2rotmatder(const Quaternion<T> &q, Quaternion<M> &a, bool transpose=false)
{
//some explicit common subexpression optimizations
T q0= q[0]+q[0];
@@ -213,18 +243,29 @@ a[3][1][2]= q2;
a[3][2][0]= q1;
a[3][2][1]= q2;
a[3][2][2]= q3;
if(transpose)
{
a[0].transposeme();
a[1].transposeme();
a[2].transposeme();
a[3].transposeme();
}
}
//normalized quaternion from rotation matrix
//convention compatible with the paper on MEMS sensors by Sebastian O.H. Madgwick
//the rotation matrix correcponds to transpose of (4) in Sarabandi and Thomas paper
//the rotation matrix correcponds to transpose of (4) in Sarabandi and Thomas paper or the NASA paper
//where the method is described
template<typename T, typename M>
void rotmat2normquat(const M &a, Quaternion<T> &q)
void rotmat2normquat(const M &a, Quaternion<T> &q, bool transpose=false)
{
T tr= a[0][0]+a[1][1]+a[2][2];
T a12m = transpose? a[1][0]-a[0][1] : a[0][1]-a[1][0];
T a13m = transpose? a[2][0]-a[0][2] : a[0][2]-a[2][0];
T a23m = transpose? a[2][1]-a[1][2] : a[1][2]-a[2][1];
if(tr>=0)
{
q[0] = (T).5*sqrt((T)1. +tr);
@@ -235,11 +276,8 @@ if(tr>=0)
else
{
T a12p = a[0][1]+a[1][0];
T a12m = a[0][1]-a[1][0];
T a13p = a[0][2]+a[2][0];
T a13m = a[0][2]-a[2][0];
T a23p = a[1][2]+a[2][1];
T a23m = a[1][2]-a[2][1];
q[0] = (T).5*sqrt((a23m*a23m+a13m*a13m+a12m*a12m)/((T)3.-tr));
q[1] = (T).5*sqrt((a23m*a23m+a12p*a12p+a13p*a13p)/((T)3.-a[0][0]+a[1][1]+a[2][2]));
@@ -247,66 +285,30 @@ else
q[3] = (T).5*sqrt((a12m*a12m+a13p*a13p+a23p*a23p)/((T)3.+a[0][0]+a[1][1]-a[2][2]));
}
if(a[1][2]-a[2][1]<0) q[1] = -q[1];
if(a[2][0]-a[0][2]<0) q[2] = -q[2];
if(a[0][1]-a[1][0]<0) q[3] = -q[3];
if(a23m<0) q[1] = -q[1];
if(a13m>0) q[2] = -q[2];
if(a12m<0) q[3] = -q[3];
}
//Functions - cf. https://en.wikipedia.org/wiki/Quaternion
//Quaternion Functions - cf. https://en.wikipedia.org/wiki/Quaternion
template<typename T>
Quaternion<T> exp(const Quaternion<T> &x)
{
Quaternion<T> r;
T vnorm = sqrt(x[1]*x[1]+x[2]*x[2]+x[3]*x[3]);
r[0] = cos(vnorm);
vnorm = sin(vnorm)/vnorm;
r[1] = x[1] * vnorm;
r[2] = x[2] * vnorm;
r[3] = x[3] * vnorm;
r*= ::exp(x[0]);
return r;
}
Quaternion<T> exp(const Quaternion<T> &x);
//NOTE: log(exp(x)) need not be always = x ... log is not unique!
//NOTE2: log(x*y) != log(y*x) != log(x)+log(y)
template<typename T>
Quaternion<T> log(const Quaternion<T> &x);
template<typename T>
Quaternion<T> log(const Quaternion<T> &x)
{
Quaternion<T> r;
T vnorm = x[1]*x[1]+x[2]*x[2]+x[3]*x[3];
T xnorm = vnorm + x[0]*x[0];
vnorm = sqrt(vnorm);
xnorm = sqrt(xnorm);
r[0] = ::log(xnorm);
T tmp = acos(x[0]/xnorm)/vnorm;
r[1] = x[1] * tmp;
r[2] = x[2] * tmp;
r[3] = x[3] * tmp;
return r;
}
Quaternion<T> pow(const Quaternion<T> &x, const T &y);
template<typename T>
Quaternion<T> pow(const Quaternion<T> &x, const T &y)
{
Quaternion<T> r;
T vnorm = x[1]*x[1]+x[2]*x[2]+x[3]*x[3];
T xnorm = vnorm + x[0]*x[0];
vnorm = sqrt(vnorm);
xnorm = sqrt(xnorm);
T phi = acos(x[0]/xnorm);
r[0] = cos(y*phi);
T tmp = sin(y*phi)/vnorm;
r[1] = x[1] * tmp;
r[2] = x[2] * tmp;
r[3] = x[3] * tmp;
r *= ::pow(xnorm,y);
return r;
}
} //namespace