continueing on polynomials

This commit is contained in:
2021-06-11 17:44:20 +02:00
parent e57d8fde1c
commit f03953ba2d
3 changed files with 158 additions and 5 deletions

View File

@@ -22,6 +22,7 @@
#include "la_traits.h"
#include "vec.h"
#include "nonclass.h"
namespace LA {
@@ -78,6 +79,7 @@ public:
while(n>0 && abs((*this)[n])<thr) --n;
resize(n,true);
};
void normalize() {if((*this)[degree()]==(T)0) laerror("zero coefficient at highest degree - simplify first"); *this /= (*this)[degree()];};
Polynomial shifted(const int shift) const
{
if(shift==0) return *this;
@@ -127,9 +129,11 @@ public:
void polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const;
Polynomial operator/(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return q;};
Polynomial operator%(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return r;};
NRMat<T> companion() const; //matrix which has this characteristic polynomial
NRVec<typename LA_traits<T>::complextype> roots() const; //implemented for complex<double> and double only
NRVec<T> realroots(const typename LA_traits<T>::normtype thr) const;
//gcd, lcm
//roots, interpolation ... special only for real->complex - declare only and implent only template specialization in .cc
//@@@gcd, lcm euler and svd
};
@@ -148,12 +152,43 @@ sum += p[0];
return sum;
}
template <typename T, typename C>
NRVec<C> values(const Polynomial<T> &p, const NRVec<C> &x)
{
NRVec<C> r(x.size());
for(int i=0; i<x.size(); ++i) r[i]=value(p,x[i]);
return r;
}
//scalar+-polynomial
template <typename T>
inline Polynomial<T> operator+(const T &a, const Polynomial<T> &rhs) {return Polynomial<T>(rhs)+=a;}
template <typename T>
inline Polynomial<T> operator-(const T &a, const Polynomial<T> &rhs) {return Polynomial<T>(rhs)-=a;}
//Sylvester matrix
template <typename T>
extern NRMat<T> Sylvester(const Polynomial<T> &p, const Polynomial<T> &q);
//polynomial from given roots
template <typename T>
Polynomial<T> polyfromroots(const NRVec<T> &roots, const int skip= -1)
{
Polynomial<T> p(0);
p[0]=(T)1;
for(int i=0; i<roots.size(); ++i)
if(i!=skip)
p = p.shifted(1) - p * roots[i];
return p;
}
template <typename T>
extern Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y);
}//namespace
#endif