continueing on polynomials
This commit is contained in:
		
							parent
							
								
									e57d8fde1c
								
							
						
					
					
						commit
						f03953ba2d
					
				@ -56,6 +56,94 @@ r.resize(rhs.degree()-1,true);
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					NRMat<T> Sylvester(const Polynomial<T> &p, const Polynomial<T> &q)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					int nm=p.degree()+q.degree();
 | 
				
			||||||
 | 
					NRMat<T> a(nm,nm);
 | 
				
			||||||
 | 
					a.clear();
 | 
				
			||||||
 | 
					for(int i=0; i<q.degree(); ++i)
 | 
				
			||||||
 | 
						for(int j=p.degree(); j>=0; --j)
 | 
				
			||||||
 | 
							a(i,i+p.degree()-j)=p[j];
 | 
				
			||||||
 | 
					for(int i=0; i<p.degree(); ++i)
 | 
				
			||||||
 | 
						for(int j=q.degree(); j>=0; --j)
 | 
				
			||||||
 | 
							a(q.degree()+i,i+q.degree()-j)=q[j];
 | 
				
			||||||
 | 
					return a;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					NRMat<T> Polynomial<T>::companion() const
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					if((*this)[degree()]==(T)0) laerror("zero coefficient at highest degree - simplify first");
 | 
				
			||||||
 | 
					NRMat<T> a(degree(),degree());
 | 
				
			||||||
 | 
					a.clear();
 | 
				
			||||||
 | 
					for(int i=0; i<degree(); ++i) a(degree()-1,i) = -(*this)[i];
 | 
				
			||||||
 | 
					for(int i=0; i<degree()-1; ++i) a(i,i+1) = (*this)[degree()];
 | 
				
			||||||
 | 
					return a;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template<>
 | 
				
			||||||
 | 
					NRVec<typename LA_traits<int>::complextype> Polynomial<int>::roots() const
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					laerror("roots not implemented for integer polynomials");
 | 
				
			||||||
 | 
					return NRVec<typename LA_traits<int>::complextype>(1);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					NRVec<typename LA_traits<T>::complextype> Polynomial<T>::roots() const
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					NRMat<T> a=this->companion();
 | 
				
			||||||
 | 
					NRVec<typename LA_traits<T>::complextype> r(degree());
 | 
				
			||||||
 | 
					gdiagonalize(a,r,NULL,NULL);
 | 
				
			||||||
 | 
					return r;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					NRVec<T> Polynomial<T>::realroots(const typename LA_traits<T>::normtype thr) const
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					NRVec<typename LA_traits<T>::complextype> r = roots();
 | 
				
			||||||
 | 
					NRVec<T> rr(degree());
 | 
				
			||||||
 | 
					int nr=0;
 | 
				
			||||||
 | 
					for(int i=0; i<degree(); ++i)
 | 
				
			||||||
 | 
						{
 | 
				
			||||||
 | 
						if(abs(r[i].imag())<thr)
 | 
				
			||||||
 | 
							{
 | 
				
			||||||
 | 
							rr[nr++] = r[i].real();
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					rr.resize(nr,true);
 | 
				
			||||||
 | 
					rr.sort();
 | 
				
			||||||
 | 
					return rr;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					if(x.size()!=y.size()) laerror("vectors of different length in lagrange_interpolation");
 | 
				
			||||||
 | 
					if(x.size()<1) laerror("empty vector in lagrange_interpolation");
 | 
				
			||||||
 | 
					if(x.size()==1)
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
					        Polynomial<T> p(0);
 | 
				
			||||||
 | 
					        p[0]=y[0];
 | 
				
			||||||
 | 
					        return p;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					int n=x.size()-1;
 | 
				
			||||||
 | 
					Polynomial<T> p(n);
 | 
				
			||||||
 | 
					p.clear();
 | 
				
			||||||
 | 
					for(int i=0; i<=n; ++i)
 | 
				
			||||||
 | 
					        {
 | 
				
			||||||
 | 
						T prod=(T)1;
 | 
				
			||||||
 | 
						for(int j=0; j<=n; ++j) if(j!=i) prod *= (x[i]-x[j]);
 | 
				
			||||||
 | 
						if(prod==(T)0) laerror("repeated x-value in lagrange_interpolation");
 | 
				
			||||||
 | 
						Polynomial<T> tmp=polyfromroots(x,i);
 | 
				
			||||||
 | 
						p += tmp * y[i] / prod;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					return p;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/***************************************************************************//**
 | 
					/***************************************************************************//**
 | 
				
			||||||
 * forced instantization in the corresponding object file
 | 
					 * forced instantization in the corresponding object file
 | 
				
			||||||
 ******************************************************************************/
 | 
					 ******************************************************************************/
 | 
				
			||||||
@ -64,10 +152,13 @@ template class Polynomial<double>;
 | 
				
			|||||||
template class Polynomial<std::complex<double> >;
 | 
					template class Polynomial<std::complex<double> >;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#define INSTANTIZE(T) \
 | 
					#define INSTANTIZE(T) \
 | 
				
			||||||
 | 
					template NRMat<T> Sylvester(const Polynomial<T> &p, const Polynomial<T> &q); \
 | 
				
			||||||
 | 
					template Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y); \
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					INSTANTIZE(int)
 | 
				
			||||||
//INSTANTIZE(double)
 | 
					INSTANTIZE(double)
 | 
				
			||||||
 | 
					INSTANTIZE(std::complex<double>)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										39
									
								
								polynomial.h
									
									
									
									
									
								
							
							
						
						
									
										39
									
								
								polynomial.h
									
									
									
									
									
								
							@ -22,6 +22,7 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#include "la_traits.h"
 | 
					#include "la_traits.h"
 | 
				
			||||||
#include "vec.h"
 | 
					#include "vec.h"
 | 
				
			||||||
 | 
					#include "nonclass.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
namespace LA {
 | 
					namespace LA {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -78,6 +79,7 @@ public:
 | 
				
			|||||||
		while(n>0 && abs((*this)[n])<thr) --n;
 | 
							while(n>0 && abs((*this)[n])<thr) --n;
 | 
				
			||||||
		resize(n,true);
 | 
							resize(n,true);
 | 
				
			||||||
		};
 | 
							};
 | 
				
			||||||
 | 
						void normalize() {if((*this)[degree()]==(T)0) laerror("zero coefficient at highest degree - simplify first"); *this /= (*this)[degree()];};
 | 
				
			||||||
	Polynomial shifted(const int shift) const
 | 
						Polynomial shifted(const int shift) const
 | 
				
			||||||
		{
 | 
							{
 | 
				
			||||||
		if(shift==0) return *this;
 | 
							if(shift==0) return *this;
 | 
				
			||||||
@ -127,9 +129,11 @@ public:
 | 
				
			|||||||
	void polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const;
 | 
						void polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const;
 | 
				
			||||||
	Polynomial operator/(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return q;};
 | 
						Polynomial operator/(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return q;};
 | 
				
			||||||
	Polynomial operator%(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return r;};
 | 
						Polynomial operator%(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return r;};
 | 
				
			||||||
 | 
						NRMat<T> companion() const; //matrix which has this characteristic polynomial
 | 
				
			||||||
 | 
						NRVec<typename LA_traits<T>::complextype> roots() const; //implemented for complex<double> and double only
 | 
				
			||||||
 | 
						NRVec<T> realroots(const typename LA_traits<T>::normtype thr) const;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	//gcd, lcm
 | 
						//@@@gcd, lcm  euler and svd  
 | 
				
			||||||
	//roots, interpolation ... special only for real->complex - declare only and implent only template specialization  in .cc
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
};
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -148,12 +152,43 @@ sum += p[0];
 | 
				
			|||||||
return sum;
 | 
					return sum;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T, typename C>
 | 
				
			||||||
 | 
					NRVec<C> values(const Polynomial<T> &p, const NRVec<C> &x)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					NRVec<C> r(x.size());
 | 
				
			||||||
 | 
					for(int i=0; i<x.size(); ++i) r[i]=value(p,x[i]);
 | 
				
			||||||
 | 
					return r;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
//scalar+-polynomial
 | 
					//scalar+-polynomial
 | 
				
			||||||
template <typename T>
 | 
					template <typename T>
 | 
				
			||||||
inline Polynomial<T> operator+(const T &a, const Polynomial<T> &rhs) {return Polynomial<T>(rhs)+=a;}
 | 
					inline Polynomial<T> operator+(const T &a, const Polynomial<T> &rhs) {return Polynomial<T>(rhs)+=a;}
 | 
				
			||||||
template <typename T>
 | 
					template <typename T>
 | 
				
			||||||
inline Polynomial<T> operator-(const T &a, const Polynomial<T> &rhs) {return Polynomial<T>(rhs)-=a;}
 | 
					inline Polynomial<T> operator-(const T &a, const Polynomial<T> &rhs) {return Polynomial<T>(rhs)-=a;}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//Sylvester matrix
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					extern NRMat<T> Sylvester(const Polynomial<T> &p, const Polynomial<T> &q);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					//polynomial from given roots
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					Polynomial<T> polyfromroots(const NRVec<T> &roots, const int skip= -1)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					Polynomial<T> p(0);
 | 
				
			||||||
 | 
					p[0]=(T)1;
 | 
				
			||||||
 | 
					for(int i=0; i<roots.size(); ++i) 
 | 
				
			||||||
 | 
					    if(i!=skip)
 | 
				
			||||||
 | 
						p = p.shifted(1) - p * roots[i];
 | 
				
			||||||
 | 
					return p;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					template <typename T>
 | 
				
			||||||
 | 
					extern Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}//namespace
 | 
					}//namespace
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										29
									
								
								t.cc
									
									
									
									
									
								
							
							
						
						
									
										29
									
								
								t.cc
									
									
									
									
									
								
							@ -2167,7 +2167,7 @@ cout <<Sn;
 | 
				
			|||||||
if(!Sn.is_valid()) laerror("internal error in Sn character calculation");
 | 
					if(!Sn.is_valid()) laerror("internal error in Sn character calculation");
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if(1)
 | 
					if(0)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
int n,m;
 | 
					int n,m;
 | 
				
			||||||
double x;
 | 
					double x;
 | 
				
			||||||
@ -2187,6 +2187,8 @@ Polynomial<double> z=value(p,q); //p(q(x))
 | 
				
			|||||||
Polynomial<double> y=value(q,p); 
 | 
					Polynomial<double> y=value(q,p); 
 | 
				
			||||||
cout <<p;
 | 
					cout <<p;
 | 
				
			||||||
cout <<q;
 | 
					cout <<q;
 | 
				
			||||||
 | 
					cout <<q.companion();
 | 
				
			||||||
 | 
					cout<<Sylvester(p,q);
 | 
				
			||||||
cout <<a;
 | 
					cout <<a;
 | 
				
			||||||
cout <<b;
 | 
					cout <<b;
 | 
				
			||||||
cout <<r;
 | 
					cout <<r;
 | 
				
			||||||
@ -2201,5 +2203,30 @@ cout << (value(p,u)*value(q,u) -value(r,u)).norm()<<endl;
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if(0)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					int n;
 | 
				
			||||||
 | 
					cin >>n ;
 | 
				
			||||||
 | 
					NRVec<double> r(n);
 | 
				
			||||||
 | 
					r.randomize(1.);
 | 
				
			||||||
 | 
					r.sort(0);
 | 
				
			||||||
 | 
					Polynomial<double> p=polyfromroots(r);
 | 
				
			||||||
 | 
					cout <<p;
 | 
				
			||||||
 | 
					cout <<r;
 | 
				
			||||||
 | 
					cout <<p.realroots(1e-10);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if(1)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					int n;
 | 
				
			||||||
 | 
					cin >>n ;
 | 
				
			||||||
 | 
					NRVec<double> x(n+1),y(n+1);
 | 
				
			||||||
 | 
					x.randomize(1.);
 | 
				
			||||||
 | 
					y.randomize(1.);
 | 
				
			||||||
 | 
					Polynomial<double> p=lagrange_interpolation(x,y);
 | 
				
			||||||
 | 
					cout <<x<<y<<p;
 | 
				
			||||||
 | 
					NRVec<double> yy=values(p,x);
 | 
				
			||||||
 | 
					cout<<"interpolation error= "<<(y-yy).norm()<<endl;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user