continueing on polynomials
This commit is contained in:
parent
e57d8fde1c
commit
f03953ba2d
@ -56,6 +56,94 @@ r.resize(rhs.degree()-1,true);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
NRMat<T> Sylvester(const Polynomial<T> &p, const Polynomial<T> &q)
|
||||
{
|
||||
int nm=p.degree()+q.degree();
|
||||
NRMat<T> a(nm,nm);
|
||||
a.clear();
|
||||
for(int i=0; i<q.degree(); ++i)
|
||||
for(int j=p.degree(); j>=0; --j)
|
||||
a(i,i+p.degree()-j)=p[j];
|
||||
for(int i=0; i<p.degree(); ++i)
|
||||
for(int j=q.degree(); j>=0; --j)
|
||||
a(q.degree()+i,i+q.degree()-j)=q[j];
|
||||
return a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
NRMat<T> Polynomial<T>::companion() const
|
||||
{
|
||||
if((*this)[degree()]==(T)0) laerror("zero coefficient at highest degree - simplify first");
|
||||
NRMat<T> a(degree(),degree());
|
||||
a.clear();
|
||||
for(int i=0; i<degree(); ++i) a(degree()-1,i) = -(*this)[i];
|
||||
for(int i=0; i<degree()-1; ++i) a(i,i+1) = (*this)[degree()];
|
||||
return a;
|
||||
}
|
||||
|
||||
template<>
|
||||
NRVec<typename LA_traits<int>::complextype> Polynomial<int>::roots() const
|
||||
{
|
||||
laerror("roots not implemented for integer polynomials");
|
||||
return NRVec<typename LA_traits<int>::complextype>(1);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
NRVec<typename LA_traits<T>::complextype> Polynomial<T>::roots() const
|
||||
{
|
||||
NRMat<T> a=this->companion();
|
||||
NRVec<typename LA_traits<T>::complextype> r(degree());
|
||||
gdiagonalize(a,r,NULL,NULL);
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
NRVec<T> Polynomial<T>::realroots(const typename LA_traits<T>::normtype thr) const
|
||||
{
|
||||
NRVec<typename LA_traits<T>::complextype> r = roots();
|
||||
NRVec<T> rr(degree());
|
||||
int nr=0;
|
||||
for(int i=0; i<degree(); ++i)
|
||||
{
|
||||
if(abs(r[i].imag())<thr)
|
||||
{
|
||||
rr[nr++] = r[i].real();
|
||||
}
|
||||
}
|
||||
rr.resize(nr,true);
|
||||
rr.sort();
|
||||
return rr;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y)
|
||||
{
|
||||
if(x.size()!=y.size()) laerror("vectors of different length in lagrange_interpolation");
|
||||
if(x.size()<1) laerror("empty vector in lagrange_interpolation");
|
||||
if(x.size()==1)
|
||||
{
|
||||
Polynomial<T> p(0);
|
||||
p[0]=y[0];
|
||||
return p;
|
||||
}
|
||||
int n=x.size()-1;
|
||||
Polynomial<T> p(n);
|
||||
p.clear();
|
||||
for(int i=0; i<=n; ++i)
|
||||
{
|
||||
T prod=(T)1;
|
||||
for(int j=0; j<=n; ++j) if(j!=i) prod *= (x[i]-x[j]);
|
||||
if(prod==(T)0) laerror("repeated x-value in lagrange_interpolation");
|
||||
Polynomial<T> tmp=polyfromroots(x,i);
|
||||
p += tmp * y[i] / prod;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/***************************************************************************//**
|
||||
* forced instantization in the corresponding object file
|
||||
******************************************************************************/
|
||||
@ -64,10 +152,13 @@ template class Polynomial<double>;
|
||||
template class Polynomial<std::complex<double> >;
|
||||
|
||||
#define INSTANTIZE(T) \
|
||||
template NRMat<T> Sylvester(const Polynomial<T> &p, const Polynomial<T> &q); \
|
||||
template Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y); \
|
||||
|
||||
|
||||
|
||||
//INSTANTIZE(double)
|
||||
INSTANTIZE(int)
|
||||
INSTANTIZE(double)
|
||||
INSTANTIZE(std::complex<double>)
|
||||
|
||||
|
||||
|
||||
|
39
polynomial.h
39
polynomial.h
@ -22,6 +22,7 @@
|
||||
|
||||
#include "la_traits.h"
|
||||
#include "vec.h"
|
||||
#include "nonclass.h"
|
||||
|
||||
namespace LA {
|
||||
|
||||
@ -78,6 +79,7 @@ public:
|
||||
while(n>0 && abs((*this)[n])<thr) --n;
|
||||
resize(n,true);
|
||||
};
|
||||
void normalize() {if((*this)[degree()]==(T)0) laerror("zero coefficient at highest degree - simplify first"); *this /= (*this)[degree()];};
|
||||
Polynomial shifted(const int shift) const
|
||||
{
|
||||
if(shift==0) return *this;
|
||||
@ -127,9 +129,11 @@ public:
|
||||
void polydiv(const Polynomial &rhs, Polynomial &q, Polynomial &r) const;
|
||||
Polynomial operator/(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return q;};
|
||||
Polynomial operator%(const Polynomial &rhs) const {Polynomial q,r; polydiv(rhs,q,r); return r;};
|
||||
NRMat<T> companion() const; //matrix which has this characteristic polynomial
|
||||
NRVec<typename LA_traits<T>::complextype> roots() const; //implemented for complex<double> and double only
|
||||
NRVec<T> realroots(const typename LA_traits<T>::normtype thr) const;
|
||||
|
||||
//gcd, lcm
|
||||
//roots, interpolation ... special only for real->complex - declare only and implent only template specialization in .cc
|
||||
//@@@gcd, lcm euler and svd
|
||||
|
||||
};
|
||||
|
||||
@ -148,12 +152,43 @@ sum += p[0];
|
||||
return sum;
|
||||
}
|
||||
|
||||
template <typename T, typename C>
|
||||
NRVec<C> values(const Polynomial<T> &p, const NRVec<C> &x)
|
||||
{
|
||||
NRVec<C> r(x.size());
|
||||
for(int i=0; i<x.size(); ++i) r[i]=value(p,x[i]);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
//scalar+-polynomial
|
||||
template <typename T>
|
||||
inline Polynomial<T> operator+(const T &a, const Polynomial<T> &rhs) {return Polynomial<T>(rhs)+=a;}
|
||||
template <typename T>
|
||||
inline Polynomial<T> operator-(const T &a, const Polynomial<T> &rhs) {return Polynomial<T>(rhs)-=a;}
|
||||
|
||||
//Sylvester matrix
|
||||
template <typename T>
|
||||
extern NRMat<T> Sylvester(const Polynomial<T> &p, const Polynomial<T> &q);
|
||||
|
||||
//polynomial from given roots
|
||||
template <typename T>
|
||||
Polynomial<T> polyfromroots(const NRVec<T> &roots, const int skip= -1)
|
||||
{
|
||||
Polynomial<T> p(0);
|
||||
p[0]=(T)1;
|
||||
for(int i=0; i<roots.size(); ++i)
|
||||
if(i!=skip)
|
||||
p = p.shifted(1) - p * roots[i];
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
extern Polynomial<T> lagrange_interpolation(const NRVec<T> &x, const NRVec<T> &y);
|
||||
|
||||
|
||||
|
||||
|
||||
}//namespace
|
||||
#endif
|
||||
|
29
t.cc
29
t.cc
@ -2167,7 +2167,7 @@ cout <<Sn;
|
||||
if(!Sn.is_valid()) laerror("internal error in Sn character calculation");
|
||||
}
|
||||
|
||||
if(1)
|
||||
if(0)
|
||||
{
|
||||
int n,m;
|
||||
double x;
|
||||
@ -2187,6 +2187,8 @@ Polynomial<double> z=value(p,q); //p(q(x))
|
||||
Polynomial<double> y=value(q,p);
|
||||
cout <<p;
|
||||
cout <<q;
|
||||
cout <<q.companion();
|
||||
cout<<Sylvester(p,q);
|
||||
cout <<a;
|
||||
cout <<b;
|
||||
cout <<r;
|
||||
@ -2201,5 +2203,30 @@ cout << (value(p,u)*value(q,u) -value(r,u)).norm()<<endl;
|
||||
|
||||
}
|
||||
|
||||
if(0)
|
||||
{
|
||||
int n;
|
||||
cin >>n ;
|
||||
NRVec<double> r(n);
|
||||
r.randomize(1.);
|
||||
r.sort(0);
|
||||
Polynomial<double> p=polyfromroots(r);
|
||||
cout <<p;
|
||||
cout <<r;
|
||||
cout <<p.realroots(1e-10);
|
||||
}
|
||||
|
||||
if(1)
|
||||
{
|
||||
int n;
|
||||
cin >>n ;
|
||||
NRVec<double> x(n+1),y(n+1);
|
||||
x.randomize(1.);
|
||||
y.randomize(1.);
|
||||
Polynomial<double> p=lagrange_interpolation(x,y);
|
||||
cout <<x<<y<<p;
|
||||
NRVec<double> yy=values(p,x);
|
||||
cout<<"interpolation error= "<<(y-yy).norm()<<endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user