/* LA: linear algebra C++ interface library Copyright (C) 2022 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef _CONTFRAC_H #define _CONTFRAC_H #include "la_traits.h" #include "vec.h" namespace LA { //Support for rationals and a simple finite continued fraction class //NOTE: 0 on any position >0 means actually infinity; simplify() shortens the vector //includes Gosper's arithmetics - cf. https://perl.plover.com/classes/cftalk/TALK //maybe implement the self-feeding Gosper's algorithm for sqrt(int) //maybe do not interpret a_i=0 i>0 as termination??? template class ContFrac; template class Rational { public: T num; T den; Rational() {}; Rational(const T p, const T q) : num(p),den(q) {}; explicit Rational(const T (&a)[2]) :num(a[0]), den(a[1]) {}; explicit Rational(const ContFrac &cf) {cf.convergent(&num,&den);}; void simplify(); //basic rational arithmetics Rational operator-() const {return Rational(-num,den);}; Rational & operator+=(const T &rhs) {num+=den*rhs; return *this;}; Rational & operator-=(const T &rhs) {num-=den*rhs; return *this;}; Rational & operator*=(const T &rhs); Rational & operator/=(const T &rhs); Rational operator+(const T &rhs) const {Rational r(*this); return r+=rhs;}; Rational operator-(const T &rhs) const {Rational r(*this); return r-=rhs;}; Rational operator*(const T &rhs) const {Rational r(*this); return r*=rhs;}; Rational operator/(const T &rhs) const {Rational r(*this); return r/=rhs;}; Rational & operator*=(const Rational &rhs); Rational & operator/=(const Rational &rhs) {return (*this)*=Rational(rhs.den,rhs.num);}; Rational operator+(const Rational &rhs) const; Rational operator-(const Rational &rhs) const; Rational operator*(const Rational &rhs) const {Rational r(*this); return r*=rhs;}; Rational operator/(const Rational &rhs) const {Rational r(*this); return r/=rhs;}; Rational & operator+=(const Rational &rhs) {*this = *this+rhs; return *this;}; Rational & operator-=(const Rational &rhs) {*this = *this-rhs; return *this;}; //combination with continued fractions ContFrac operator+(const ContFrac &rhs) const {return rhs + *this;}; ContFrac operator-(const ContFrac &rhs) const {return -rhs + *this;}; ContFrac operator*(const ContFrac &rhs) const {return rhs * *this;}; ContFrac operator/(const ContFrac &rhs) const {return rhs.reciprocal() * *this;}; //relational operators, relying that operator- yields a form with a positive denominator bool operator==(const Rational &rhs) const {Rational t= *this-rhs; return t.num==0;}; bool operator!=(const Rational &rhs) const {Rational t= *this-rhs; return t.num!=0;}; bool operator>=(const Rational &rhs) const {Rational t= *this-rhs; return t.num>=0;}; bool operator<=(const Rational &rhs) const {Rational t= *this-rhs; return t.num<=0;}; bool operator>(const Rational &rhs) const {Rational t= *this-rhs; return t.num>0;}; bool operator<(const Rational &rhs) const {Rational t= *this-rhs; return t.num<0;}; }; template std::ostream & operator<<(std::ostream &s, const Rational &x) { s< std::istream & operator>>(std::istream &s, Rational &x) { char c; s>>x.num>>c>>x.den; return s; } template class Homographic; template class BiHomographic; template class ContFrac : public NRVec { private: int size() const; //prevent confusion with vector size public: ContFrac(): NRVec() {}; explicit ContFrac(const std::list &x) : NRVec(x) {}; template ContFrac(const T (&a)[SIZE]) : NRVec(a) {}; ContFrac(const NRVec &v) : NRVec(v) {}; //allow implicit conversion from NRVec ContFrac(const int n) : NRVec(n+1) {}; explicit ContFrac(double x, const int n, const T thres=0); //WARNING: it might yield a non-canonical form //we could make a template for analogous conversion from an arbitrary-precision type ContFrac(T p, T q); //should yield a canonical form explicit ContFrac(const Rational &r) : ContFrac(r.num,r.den) {}; void canonicalize(); void convergent(T *p, T*q, const int trunc= -1) const; Rational rational(const int trunc= -1) const {T p,q; convergent(&p,&q,trunc); return Rational(p,q);}; double value(const int trunc= -1) const; //we could make also a template usable with an arbitrary-precision type ContFrac reciprocal() const; ContFrac operator-() const; //unary minus int length() const {return NRVec::size()-1;}; void resize(const int n, const bool preserve=true) { int nold=length(); NRVec::resize(n+1,preserve); if(preserve) for(int i=nold+1; i<=n;++i) (*this)[i]=0; } //arithmetics with a single ContFrac operand ContFrac operator+(const Rational &rhs) const {Homographic h({{rhs.num,rhs.den},{rhs.den,0}}); return h.value(*this);}; ContFrac operator-(const Rational &rhs) const {Homographic h({{-rhs.num,rhs.den},{rhs.den,0}}); return h.value(*this);}; ContFrac operator*(const Rational &rhs) const {Homographic h({{0,rhs.num},{rhs.den,0}}); return h.value(*this);}; ContFrac operator/(const Rational &rhs) const {Homographic h({{0,rhs.den},{rhs.num,0}}); return h.value(*this);}; ContFrac & operator+=(const T &rhs) {this->copyonwrite(); (*this)[0]+=rhs; return *this;}; ContFrac & operator-=(const T &rhs) {this->copyonwrite(); (*this)[0]-=rhs; return *this;}; ContFrac operator+(const T &rhs) const {ContFrac r(*this); r+=rhs; return r;}; ContFrac operator-(const T &rhs) const {ContFrac r(*this); r-=rhs; return r;}; ContFrac operator*(const T &rhs) const {Homographic h({{0,rhs},{1,0}}); return h.value(*this);}; ContFrac operator/(const T &rhs) const {Homographic h({{0,1},{rhs,0}}); return h.value(*this);}; //arithmetics with two ContFrac operands ContFrac operator+(const ContFrac &rhs) const {BiHomographic h({{{0,1},{1,0}},{{1,0},{0,0}}}); return h.value(*this,rhs);}; ContFrac operator-(const ContFrac &rhs) const {BiHomographic h({{{0,1},{-1,0}},{{1,0},{0,0}}}); return h.value(*this,rhs);}; ContFrac operator*(const ContFrac &rhs) const {BiHomographic h({{{0,0},{0,1}},{{1,0},{0,0}}}); return h.value(*this,rhs);}; ContFrac operator/(const ContFrac &rhs) const {BiHomographic h({{{0,1},{0,0}},{{0,0},{1,0}}}); return h.value(*this,rhs);}; //relational operators, guaranteed only to work correctly for canonicalized CF! T compare(const ContFrac &rhs) const; bool operator==(const ContFrac &rhs) const {return compare(rhs)==0;}; bool operator>(const ContFrac &rhs) const {return compare(rhs)>0;}; bool operator<(const ContFrac &rhs) const {return rhs.operator>(*this);}; bool operator!=(const ContFrac &rhs) const {return ! this->operator==(rhs) ;} bool operator<=(const ContFrac &rhs) const {return ! this->operator>(rhs) ;} bool operator>=(const ContFrac &rhs) const {return ! this->operator<(rhs) ;} //iterator class iterator { private: T *p; public: iterator() {}; ~iterator() {}; iterator(T *v): p(v) {}; bool operator==(const iterator rhs) const {return p==rhs.p;} bool operator!=(const iterator rhs) const {return p!=rhs.p;} iterator operator++() {return ++p;} iterator operator++(int) {return p++;} T& operator*() const {return *p;} T *operator->() const {return p;} }; iterator begin() const {return NRVec::v;} iterator end() const {return NRVec::v+NRVec::nn;} iterator beyondend() const {return NRVec::v+NRVec::nn+1;} }; //for Gosper's arithmetic template class Homographic { public: T v[2][2]; //{{a,b},{c,d}} for (a+b.x)/(c+d.x) i.e. [denominator][power_x] Homographic(){}; explicit Homographic(const T (&a)[2][2]) {memcpy(v,a,2*2*sizeof(T));}; ContFrac value(const ContFrac&z) const; Homographic input(const T &x, const bool inf) const; Homographic output(const T &x) const; bool outputready(T &x, bool first) const; bool terminate() const; }; template class BiHomographic { public: T v[2][2][2]; //{{{a,b},{c,d}},{{e,f},{g,h}}} i.e.[denominator][power_y][power_x] BiHomographic(){}; explicit BiHomographic(const T (&a)[2][2][2]) {memcpy(v,a,2*2*2*sizeof(T));}; ContFrac value(const ContFrac&x, const ContFrac&y) const; BiHomographic inputx(const T &x, const bool inf) const; BiHomographic inputy(const T &y, const bool inf) const; BiHomographic output(const T &z) const; int inputselect() const; bool outputready(T &x,bool first) const; bool terminate() const; }; }//namespace #endif