/* LA: linear algebra C++ interface library Copyright (C) 2024 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //a simple tensor class with arbitrary symmetry of index subgroups //stored in an efficient way //each index group has a specific symmetry (nosym,sym,antisym) //additional symmetry between index groups (like in 2-electron integrals) is not supported directly, you would need to nest the class to Tensor > //presently only a rudimentary implementation //presently limited to 2G data size due to NRVec - maybe use a typedef LA_index //to uint64_t in the future in vector and matrix classes #ifndef _TENSOR_H #define _TENSOR_H #include #include #include "vec.h" #include "mat.h" #include "smat.h" #include "miscfunc.h" //@@@todo - outer product //@@@permutation of individual indices??? how to treat the symmetry groups //@@@todo - index names and contraction by named index list namespace LA { template class Signedpointer { T *ptr; int sgn; public: Signedpointer(T *p, int s) : ptr(p),sgn(s) {}; //dereferencing *ptr should intentionally segfault for sgn==0 T& operator=(const T rhs) {if(sgn>0) *ptr=rhs; else *ptr = -rhs; return *ptr;} T& operator*=(const T rhs) {*ptr *= rhs; return *ptr;} T& operator/=(const T rhs) {*ptr /= rhs; return *ptr;} T& operator+=(const T rhs) {if(sgn>0) *ptr += rhs; else *ptr -= rhs; return *ptr;} T& operator-=(const T rhs) {if(sgn>0) *ptr -= rhs; else *ptr += rhs; return *ptr;} }; typedef int LA_index; typedef int LA_largeindex; typedef class indexgroup { public: int number; //number of indices int symmetry; //-1 0 or 1, later 2 for hermitian and -2 for antihermitian? - would need change in operator() and Signedpointer #ifdef LA_TENSOR_ZERO_OFFSET static const LA_index offset = 0; //compiler can optimize away some computations #else LA_index offset; //indices start at a general offset #endif LA_index range; //indices span this range bool operator==(const indexgroup &rhs) const {return number==rhs.number && symmetry==rhs.symmetry && offset==rhs.offset && range==rhs.range;}; inline bool operator!=(const indexgroup &rhs) const {return !((*this)==rhs);}; } INDEXGROUP; std::ostream & operator<<(std::ostream &s, const INDEXGROUP &x); std::istream & operator>>(std::istream &s, INDEXGROUP &x); template<> class LA_traits { public: static bool is_plaindata() {return true;}; static void copyonwrite(indexgroup& x) {}; typedef INDEXGROUP normtype; static inline int gencmp(const indexgroup *a, const indexgroup *b, int n) {return memcmp(a,b,n*sizeof(indexgroup));}; static inline void put(int fd, const indexgroup &x, bool dimensions=1) {if(sizeof(indexgroup)!=write(fd,&x,sizeof(indexgroup))) laerror("write error 1 in indexgroup put"); } static inline void multiput(int nn, int fd, const indexgroup *x, bool dimensions=1) {if(nn*sizeof(indexgroup)!=write(fd,x,nn*sizeof(indexgroup))) laerror("write error 1 in indexgroup multiiput"); } static inline void get(int fd, indexgroup &x, bool dimensions=1) {if(sizeof(indexgroup)!=read(fd,&x,sizeof(indexgroup))) laerror("read error 1 in indexgroup get");} static inline void multiget(int nn, int fd, indexgroup *x, bool dimensions=1) {if(nn*sizeof(indexgroup)!=read(fd,x,nn*sizeof(indexgroup))) laerror("read error 1 in indexgroup get");} }; typedef NRVec FLATINDEX; //all indices but in a single vector typedef NRVec > SUPERINDEX; //all indices in the INDEXGROUP structure typedef NRVec GROUPINDEX; //set of indices in the symmetry groups struct INDEX { int group; int index; }; typedef NRVec INDEXLIST; //collection of several indices int flatposition(const INDEX &i, const NRVec &shape); //position of that index in FLATINDEX int flatposition(const INDEX &i, const NRVec &shape); FLATINDEX superindex2flat(const SUPERINDEX &I); template class Tensor { public: NRVec shape; NRVec data; int myrank; NRVec groupsizes; //group sizes of symmetry index groups (a function of shape but precomputed for efficiency) NRVec cumsizes; //cumulative sizes of symmetry index groups (a function of shape but precomputed for efficiency); always cumsizes[0]=1, index group 0 is the innermost-loop one public: LA_largeindex index(int *sign, const SUPERINDEX &I) const; //map the tensor indices to the position in data LA_largeindex index(int *sign, const FLATINDEX &I) const; //map the tensor indices to the position in data LA_largeindex vindex(int *sign, LA_index i1, va_list args) const; //map list of indices to the position in data SUPERINDEX inverse_index(LA_largeindex s) const; //inefficient, but possible if needed //constructors Tensor() : myrank(0) {}; Tensor(const NRVec &s) : shape(s) { data.resize(calcsize()); calcrank();}; //general tensor Tensor(const indexgroup &g) {shape.resize(1); shape[0]=g; data.resize(calcsize()); calcrank();}; //tensor with a single index group Tensor(const Tensor &rhs): myrank(rhs.myrank), shape(rhs.shape), groupsizes(rhs.groupsizes), cumsizes(rhs.cumsizes), data(rhs.data) {}; Tensor(int xrank, const NRVec &xshape, const NRVec &xgroupsizes, const NRVec xcumsizes, const NRVec &xdata) : myrank(xrank), shape(xshape), groupsizes(xgroupsizes), cumsizes(xcumsizes), data(xdata) {}; explicit Tensor(const NRVec &x); explicit Tensor(const NRMat &x); explicit Tensor(const NRSMat &x); void clear() {data.clear();}; int rank() const {return myrank;}; int calcrank(); //is computed from shape LA_largeindex calcsize(); //set redundant data and return total size LA_largeindex size() const {return data.size();}; void copyonwrite() {shape.copyonwrite(); groupsizes.copyonwrite(); cumsizes.copyonwrite(); data.copyonwrite();}; void resize(const NRVec &s) {shape=s; data.resize(calcsize()); calcrank();}; inline Signedpointer lhs(const SUPERINDEX &I) {int sign; LA_largeindex i=index(&sign,I); return Signedpointer(&data[i],sign);}; inline T operator()(const SUPERINDEX &I) const {int sign; LA_largeindex i=index(&sign,I); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];}; inline Signedpointer lhs(const FLATINDEX &I) {int sign; LA_largeindex i=index(&sign,I); return Signedpointer(&data[i],sign);}; inline T operator()(const FLATINDEX &I) const {int sign; LA_largeindex i=index(&sign,I); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];}; inline Signedpointer lhs(LA_index i1...) {va_list args; int sign; LA_largeindex i; va_start(args,i1); i= vindex(&sign, i1,args); return Signedpointer(&data[i],sign); }; inline T operator()(LA_index i1...) const {va_list args; ; int sign; LA_largeindex i; va_start(args,i1); i= vindex(&sign, i1,args); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];}; inline Tensor& operator=(const Tensor &rhs) {myrank=rhs.myrank; shape=rhs.shape; groupsizes=rhs.groupsizes; cumsizes=rhs.cumsizes; data=rhs.data; return *this;}; inline Tensor& operator*=(const T &a) {data*=a; return *this;}; inline Tensor operator*(const T &a) const {Tensor r(*this); r *=a; return r;}; inline Tensor& operator/=(const T &a) {data/=a; return *this;}; inline Tensor operator/(const T &a) const {Tensor r(*this); r /=a; return r;}; Tensor& conjugateme() {data.conjugateme(); return *this;}; inline Tensor conjugate() const {Tensor r(*this); r.conjugateme(); return r;}; inline Tensor& operator+=(const Tensor &rhs) { #ifdef DEBUG if(shape!=rhs.shape) laerror("incompatible tensors for operation"); #endif data+=rhs.data; return *this; } inline Tensor& operator-=(const Tensor &rhs) { #ifdef DEBUG if(shape!=rhs.shape) laerror("incompatible tensors for operation"); #endif data-=rhs.data; return *this; } inline Tensor operator+(const Tensor &rhs) const {Tensor r(*this); r+=rhs; return r;}; inline Tensor operator-(const Tensor &rhs) const {Tensor r(*this); r-=rhs; return r;}; Tensor operator-() const {return Tensor(myrank,shape,groupsizes,cumsizes,-data);}; //unary- void put(int fd) const; void get(int fd); inline void randomize(const typename LA_traits::normtype &x) {data.randomize(x);}; void loopover(void (*callback)(const SUPERINDEX &, T *)); //loop over all elements void grouploopover(void (*callback)(const GROUPINDEX &, T *)); //loop over all elements disregarding the internal structure of index groups Tensor permute_index_groups(const NRPerm &p) const; //rearrange the tensor storage permuting index groups as a whole Tensor unwind_index(int group, int index) const; //separate an index from a group and expand it to full range as the least significant one Tensor unwind_indices(const INDEXLIST &il) const; //the same for a list of indices void addcontraction(const Tensor &rhs1, int group, int index, const Tensor &rhs2, int rhsgroup, int rhsindex, T alpha=1, T beta=1, bool doresize=false, bool conjugate1=false, bool conjugate=false); //rhs1 will have more significant non-contracted indices in the result than rhs2 inline Tensor contraction(int group, int index, const Tensor &rhs, int rhsgroup, int rhsindex, T alpha=1, bool conjugate1=false, bool conjugate=false) const {Tensor r; r.addcontraction(*this,group,index,rhs,rhsgroup,rhsindex,alpha,0,true, conjugate1, conjugate); return r; }; void addcontractions(const Tensor &rhs1, const INDEXLIST &il1, const Tensor &rhs2, const INDEXLIST &il2, T alpha=1, T beta=1, bool doresize=false, bool conjugate1=false, bool conjugate2=false); inline Tensor contractions( const INDEXLIST &il1, const Tensor &rhs2, const INDEXLIST &il2, T alpha=1, bool conjugate1=false, bool conjugate2=false) const {Tensor r; r.addcontractions(*this,il1,rhs2,il2,alpha,0,true,conjugate1, conjugate2); return r; }; void apply_permutation_algebra(const Tensor &rhs, const PermutationAlgebra &pa, bool inverse=false, T alpha=1, T beta=0); //general (not optimally efficient) symmetrizers, antisymmetrizers etc. acting on the flattened index list: // this *=beta; for I over this: this(I) += alpha * sum_P c_P rhs(P(I)) // PermutationAlgebra can represent e.g. general_antisymmetrizer in Kucharski-Bartlett notation void split_index_group(int group); //formal split of a non-symmetric index group WITHOUT the need for data reorganization void merge_adjacent_index_groups(int groupfrom, int groupto); //formal merge of non-symmetric index groups WITHOUT the need for data reorganization Tensor merge_index_groups(const NRVec &groups) const; //TODO perhaps implement application of a permutation algebra to a product of several tensors }; template std::ostream & operator<<(std::ostream &s, const Tensor &x); template std::istream & operator>>(std::istream &s, Tensor &x); }//namespace #endif