/* LA: linear algebra C++ interface library Copyright (C) 2008-2020 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "quaternion.h" //do not replicate this code in each object file, therefore not in .h //and instantize the templates for the types needed template const Quaternion Quaternion::operator*(const Quaternion &rhs) const { return Quaternion ( this->q[0]*rhs.q[0]-this->q[1]*rhs.q[1]-this->q[2]*rhs.q[2]-this->q[3]*rhs.q[3], this->q[0]*rhs.q[1]+this->q[1]*rhs.q[0]+this->q[2]*rhs.q[3]-this->q[3]*rhs.q[2], this->q[0]*rhs.q[2]+this->q[2]*rhs.q[0]+this->q[3]*rhs.q[1]-this->q[1]*rhs.q[3], this->q[0]*rhs.q[3]+this->q[3]*rhs.q[0]+this->q[1]*rhs.q[2]-this->q[2]*rhs.q[1] ); }; //basically the same code as in normquat2rotmat, but avoiding extra storage template void Quaternion::rotate(T *to, const T *from) const { to[0] = (2*q[0]*q[0]-1+2*q[1]*q[1]) * from[0] + 2*(q[1]*q[2]+q[0]*q[3]) * from[1] + 2*(q[1]*q[3]-q[0]*q[2]) * from[2]; to[1] = 2*(q[1]*q[2]-q[0]*q[3]) * from[0] + (2*q[0]*q[0]-1+2*q[2]*q[2]) * from[1] + 2*(q[2]*q[3]+q[0]*q[1]) * from[2]; to[2] = 2*(q[1]*q[3]+q[0]*q[2]) * from[0] + 2*(q[2]*q[3]-q[0]*q[1]) * from[1] + (2*q[0]*q[0]-1+2*q[3]*q[3]) * from[2]; } template Quaternion Quaternion::rotateby(const Quaternion &rhs) { //return rhs.inverse() * *this * rhs; //inefficient reference implementation Quaternion r; r[0]=0; rhs.rotate(&r[1],&q[1]); return r; } //optionally skip this for microcontrollers if not needed //note that C++ standard headers should use float version of the functions for T=float #ifndef AVOID_GONIOM_FUNC template void normquat2euler(const Quaternion &q, T *e) { e[0]= atan2(2*q[1]*q[2]-2*q[0]*q[3],2*q[0]*q[0]+2*q[1]*q[1]-1); e[1]= -asin(2*q[1]*q[3]+2*q[0]*q[2]); e[2]= atan2(2*q[2]*q[3]-2*q[0]*q[1],2*q[0]*q[0]+2*q[3]*q[3]-1); } template void axis2normquat(const T *axis, const T &angle, Quaternion &q) { T a = (T).5*angle; q[0]=cos(a); T s=sin(a); q[1]=axis[0]*s; q[2]=axis[1]*s; q[3]=axis[2]*s; } template void normquat2axis(const Quaternion &q, T *axis, T &angle) { T s = sqrt(q[1]*q[1] + q[2]*q[2] +q[3]*q[3]); angle = 2*atan2(s,q[0]); s= 1/s; axis[0]= q[1]*s; axis[1]= q[2]*s; axis[2]= q[3]*s; } #endif //force instantization #define INSTANTIZE(T) \ template class Quaternion; \ #define INSTANTIZE2(T) \ template void normquat2euler(const Quaternion &q, T *e); \ template void axis2normquat(const T *axis, const T &angle, Quaternion &q); \ template void normquat2axis(const Quaternion &q, T *axis, T &angle); \ INSTANTIZE(float) #ifndef QUAT_NO_DOUBLE INSTANTIZE(double) #endif #ifndef AVOID_GONIOM_FUNC INSTANTIZE2(float) #ifndef QUAT_NO_DOUBLE INSTANTIZE2(double) #endif #endif