/* LA: linear algebra C++ interface library Copyright (C) 2008-2023 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef _BITVECTOR_H_ #define _BITVECTOR_H_ #include "vec.h" #include "numbers.h" #include namespace LA { //compressed storage of large bit vectors //let's now use 64-bit blocks exclusively for simplicity typedef uint64_t bitvector_block; #define blockbits (8*sizeof(bitvector_block)) inline unsigned int bitvector_rounded(unsigned int n) { return ((n+blockbits-1)/blockbits)*blockbits; } class bitvector : public NRVec { private: unsigned int modulo; public: bitvector() : NRVec() {}; explicit bitvector (const unsigned int n):NRVec((n+blockbits-1)/blockbits) {modulo=n%blockbits;}; bitvector (const bitvector_block a, const unsigned int n):NRVec(a,(n+blockbits-1)/blockbits) {modulo=n%blockbits;}; bitvector(const bitvector &rhs) : NRVec(rhs) {modulo=rhs.modulo;}; //operator= seems to be correctly synthetized by the compiler //override dereferencing to address single bits, is however possible //only in the const context (otherwise we would have to define a type which, when assigned to, changes a single bit - possible but probably inefficient) void resize(const unsigned int n, bool preserve=false); //preserve data or clear unsigned int size() const {return (nn*blockbits)-blockbits+(modulo?modulo:blockbits);}; //arguments must be unsigned to keep the resulting assembly code simple and efficient const bool operator[](const unsigned int i) const {return (v[i/blockbits] >>(i%blockbits))&1ULL;}; const bool get(const unsigned int i) const {return (*this)[i];}; bitvector_block getblock(const unsigned int i) const {return v[i];}; //integer interpretation void setblock(const unsigned int i, const bitvector_block b) {v[i]=b;}; int getblocksize() const {return 8*sizeof(bitvector_block);}; void set(const unsigned int i) {v[i/blockbits] |= (1UL<<(i%blockbits));}; void reset(const unsigned int i) {v[i/blockbits] &= ~(1UL<<(i%blockbits));}; const bool assign(const unsigned int i, const bool r) {if(r) set(i); else reset(i); return r;}; void clear() {copyonwrite(true); memset(v,0,nn*sizeof(bitvector_block));}; void fill() {memset(v,0xff,nn*sizeof(bitvector_block));}; bool iszero() const {for(int i=0; i(const bitvector &rhs) const; bool operator<(const bitvector &rhs) const; bool operator>=(const bitvector &rhs) const {return !(*this < rhs);}; bool operator<=(const bitvector &rhs) const {return !(*this > rhs);}; bitvector operator~() const; bitvector& operator&=(const bitvector &rhs); bitvector& operator|=(const bitvector &rhs); bitvector& operator^=(const bitvector &rhs); bitvector& operator+=(const bitvector &rhs) {return (*this)^=rhs;}; //addition modulo 2 bitvector& operator-=(const bitvector &rhs) {return (*this)^=rhs;}; //subtraction modulo 2 bitvector operator&(const bitvector &rhs) const {return bitvector(*this) &= rhs;}; bitvector operator|(const bitvector &rhs) const {return bitvector(*this) |= rhs;}; bitvector operator^(const bitvector &rhs) const {return bitvector(*this) ^= rhs;}; bitvector operator+(const bitvector &rhs) const {return *this ^ rhs;}; //addition modulo 2 bitvector operator-(const bitvector &rhs) const {return *this ^ rhs;}; //subtraction modulo 2 bitvector operator*(const bitvector &rhs) const; //multiplication of polynomials over GF(2) NOTE: naive algorithm, does not employ CLMUL nor fft-like approach, only for short vectors!!! bitvector division(const bitvector &rhs, bitvector &remainder) const; bitvector operator/(const bitvector &rhs) const {bitvector rem(rhs.size()); return division(rhs,rem);}; bitvector operator%(const bitvector &rhs) const {bitvector rem(rhs.size()); division(rhs,rem); return rem;}; bitvector gcd(const bitvector &rhs) const; bitvector lcm(const bitvector &rhs) const {return (*this)*rhs/this->gcd(rhs);}; unsigned int bitdiff(const bitvector &y) const; //number of differing bits unsigned int population(const unsigned int before=0) const; //number of 1's unsigned int nlz() const; //number of leading zeroes unsigned int degree() const {if(iszero()) return 0; else return size()-nlz()-1;}; //interprested as a polynomial over GF(2) unsigned int ntz() const; //number of trailing zeroes //extended, truncated const i.e. not on *this but return new entity, take care of modulo's bits //logical shifts bitvector& operator>>=(unsigned int i); bitvector& leftshift(unsigned int i, bool autoresize=false); bitvector& operator<<=(unsigned int i) {return leftshift(i,true);}; bitvector operator>>(unsigned int i) const {bitvector r(*this); return r>>=i;}; bitvector operator<<(unsigned int i) const {bitvector r(*this); return r<<=i;}; //logical rotations not implemented yet //unformatted file IO void read(int fd, bool dimensions=1, bool transp=0); void write(int fd, bool dimensions=1, bool transp=0); }; //expand to separate bytes or ints template void bitvector_expand(const bitvector &v, NRVec &r) { int n=v.size(); r.resize(n); r.clear(); for(int i=0; i bitvector mantissa(T x, int nbits, int shift=0) { while(shift >0) {x+=x; --shift;} while(shift <0) {x*=.5; ++shift;} if(x<0||x>=1) laerror("number not normalized in bitvector mantissa"); bitvector b(nbits); b.clear(); T y= x+x; for(int i=0; i void bitvector_decimal(T &x, const bitvector &b, int shift=0) { x=0; for(int i=b.size()-1; i>=0; --i) if(b[i]) x += 1./(1ULL<0) {x+=x; --shift;} while(shift <0) {x*=.5; ++shift;} } template void bitvector_compress(bitvector &r, const NRVec &v) { int n=v.size(); r.resize(n); r.clear(); for(int i=0; i>(std::istream &s, bitvector &x); class bitvector_from1 : public bitvector { public: bitvector_from1() : bitvector() {}; bitvector_from1(const bitvector &rhs) :bitvector(rhs) {}; explicit bitvector_from1(const unsigned int n) : bitvector(n) {}; const bool operator[](const unsigned int i) {return bitvector::operator[](i-1);}; void set(const unsigned int i) {bitvector::set(i-1);}; void reset(const unsigned int i) {bitvector::reset(i-1);}; const bool get(const unsigned int i) {return bitvector::get(i-1);}; const bool assign(const unsigned int i, const bool r) {return bitvector::assign(i-1,r);}; unsigned int population(const unsigned int before=0) const {return bitvector::population(before?before-1:0);}; }; }//namespace #endif