/* LA: linear algebra C++ interface library Copyright (C) 2021 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef _PERMUTATION_H #define _PERMUTATION_H #include "la_traits.h" #include "vec.h" #include "polynomial.h" #include "nonclass.h" typedef unsigned long long PERM_RANK_TYPE; //permutations are always numbered from 1; offset is employed when applied to vectors and matrices namespace LA { //forward declaration template class CyclePerm; template class Partition; template class CompressedPartition; template class YoungTableaux; template class WeightPermutation; template class PermutationAlgebra; //operator== != < > inherited from NRVec template class NRPerm : public NRVec_from1 { public: //basic constructors NRPerm(): NRVec_from1() {}; template explicit NRPerm(const T (&a)[SIZE]) : NRVec_from1(a) {}; NRPerm(const int n) : NRVec_from1(n) {}; NRPerm(const NRVec_from1 &rhs): NRVec_from1(rhs) {}; NRPerm(const T *a, const int n): NRVec_from1(a, n) {}; explicit NRPerm(const CyclePerm &rhs, const int n=0); //specific operations int size() const {return NRVec_from1::size();}; void identity(); bool is_valid() const; //is it really a permutation bool is_identity() const; NRPerm inverse() const; NRPerm reverse() const; //backward order NRPerm operator&(const NRPerm &rhs) const; //concatenate the permutations this,rhs, renumbering rhs (not commutative) NRPerm operator|(const NRPerm &rhs) const; //concatenate the permutations rhs,this, renumbering rhs (not commutative) NRPerm operator*(const NRPerm &q) const; //q is rhs and applied first, this applied second NRPerm operator*(const CyclePerm &r) const; NRPerm conjugate_by(const NRPerm &q) const; //q^-1 p q int parity() const; //returns +/- 1 void randomize(void); //uniformly random by Fisher-Yates shuffle bool next(); //generate next permutation in lex order PERM_RANK_TYPE generate_all(void (*callback)(const NRPerm&), int parity_select=0); //Algorithm L from Knuth's vol.4, efficient but not in lex order! PermutationAlgebra list_all(int parity_select=0); PERM_RANK_TYPE generate_all_multi(void (*callback)(const NRPerm&)); //Algorithm L2 from Knuth's vol.4, for a multiset (repeated numbers, not really permutations) PERM_RANK_TYPE generate_all2(void (*callback)(const NRPerm&)); //recursive method, also not lexicographic PERM_RANK_TYPE generate_all_lex(void (*callback)(const NRPerm&)); //generate in lex order using next() PERM_RANK_TYPE generate_restricted(void (*callback)(const NRPerm&), const NRVec_from1 &classes, int restriction_type=0); PermutationAlgebra list_restricted(const NRVec_from1 &classes, int restriction_type=0, bool inverted=false); //weight is set to parity (antisymmetrizer) by default PERM_RANK_TYPE rank() const; //counted from 0 to n!-1 NRVec_from1 inversions(const int type, PERM_RANK_TYPE *prank=NULL) const; //inversion tables explicit NRPerm(const int type, const NRVec_from1 &inversions); //compute permutation from inversions explicit NRPerm(const int n, const PERM_RANK_TYPE rank); //compute permutation from its rank NRPerm pow(const int n) const {return power(*this,n);}; }; //this is not a class memeber due to double templating //it is also possible to use member function permuted of NRVec(_from1) template NRVec_from1 applypermutation(const NRPerm &p, const NRVec_from1 &set, bool inverse=false) { #ifdef DEBUG if(p.size()!=set.size()) laerror("size mismatch in applypermutation"); #endif NRVec_from1 r(set.size()); if(inverse) for(int i=1; i<=p.size(); ++i) r[p[i]] = set[i]; else for(int i=1; i<=p.size(); ++i) r[i] = set[p[i]]; return r; } template class WeightPermutation { public: R weight; NRPerm perm; int size() const {return perm.size();}; bool is_zero() const {return weight==0;} bool is_scaledidentity() const {return perm.is_identity();} bool is_identity() const {return weight==1 && is_scaledidentity();} bool is_plaindata() const {return false;}; WeightPermutation() : weight(0) {}; WeightPermutation(const R w, const NRPerm &p) : weight(w), perm(p) {}; WeightPermutation(const NRPerm &p) : perm(p) {weight= p.parity();}; void copyonwrite() {perm.copyonwrite();}; WeightPermutation operator&(const WeightPermutation &rhs) const {return WeightPermutation(weight*rhs.weight,perm&rhs.perm);}; WeightPermutation operator|(const WeightPermutation &rhs) const {return WeightPermutation(weight*rhs.weight,perm|rhs.perm);}; WeightPermutation operator*(const WeightPermutation &rhs) const {return WeightPermutation(weight*rhs.weight,perm*rhs.perm);}; WeightPermutation operator*(const R &x) const {return WeightPermutation(weight*x,perm); } bool operator==(const WeightPermutation &rhs) const {return this->perm == rhs.perm;}; //NOTE for sorting, compares only the permutation not the weight! bool operator!=(const WeightPermutation &rhs) const {return !(*this==rhs);} //NOTE: compares only the permutation bool operator>(const WeightPermutation &rhs) const {return this->perm > rhs.perm;}; bool operator<(const WeightPermutation &rhs) const {return this->perm < rhs.perm;}; bool operator>=(const WeightPermutation &rhs) const {return !(*this < rhs);}; bool operator<=(const WeightPermutation &rhs) const {return !(*this > rhs);}; }; //some necessary traits of the non-scalar class to be able to use LA methods template class LA_traits > { public: static bool is_plaindata() {return false;}; static void copyonwrite(WeightPermutation& x) {x.perm.copyonwrite();}; typedef typename LA_traits::normtype normtype; typedef R coefficienttype; typedef NRPerm elementtype; static inline bool smaller(const WeightPermutation& x, const WeightPermutation& y) {return x.perm& x, const WeightPermutation& y) {return x.perm>y.perm;}; static R coefficient(const WeightPermutation& x){return x.weight;}; static R& coefficient(WeightPermutation& x) {return x.weight;}; static typename LA_traits::normtype abscoefficient(const WeightPermutation& x){return LA_traits::abs2(x.weight);}; }; template std::istream & operator>>(std::istream &s, WeightPermutation &x) { s>>x.weight>>x.perm; return s; } template std::ostream & operator<<(std::ostream &s, const WeightPermutation &x) { s< class PermutationAlgebra : public NRVec > { public: PermutationAlgebra() {}; PermutationAlgebra(int n) : NRVec >(n) {}; PermutationAlgebra(const NRVec > &x) : NRVec >(x) {}; int size() const {return NRVec >::size();}; void copyonwrite() {NRVec >::copyonwrite();}; int sort(int direction = 0, int from = 0, int to = -1, int *permut = NULL, bool stable=false) {return NRVec >::sort(direction,from, to,permut,stable);}; PermutationAlgebra operator&(const PermutationAlgebra &rhs) const; PermutationAlgebra operator|(const PermutationAlgebra &rhs) const; PermutationAlgebra operator*(const PermutationAlgebra &rhs) const; PermutationAlgebra operator+(const PermutationAlgebra &rhs) const; PermutationAlgebra &operator*=(const R &x) {this->copyonwrite(); for(int i=1; i<=size(); ++i) (*this)[i].weight *= x; return *this;}; PermutationAlgebra operator*(const R &x) const {PermutationAlgebra r(*this); return r*=x;}; void simplify(const typename LA_traits::normtype thr=0) {NRVec_simplify(*this,thr);}; bool operator==(PermutationAlgebra &rhs); //do NOT inherit from NRVec, as the underlying one ignores weights for the simplification; also we have to simplify before comparison bool is_zero() const {return size()==0;}; //assume it was simplified bool is_scaled_identity() const {return size()==1 && (*this)[0].is_scaledidentity();}; //assume it was simplified bool is_identity() const {return size()==1 && (*this)[0].is_identity();}; //assume it was simplified }; extern PERM_RANK_TYPE factorial(const int n); extern PERM_RANK_TYPE binom(int n, int k); extern PERM_RANK_TYPE longpow(PERM_RANK_TYPE x, int i); //permutations represented in the cycle format template class CyclePerm : public NRVec_from1 > { public: CyclePerm() : NRVec_from1 >() {}; template explicit CyclePerm(const NRVec_from1 (&a)[SIZE]) : NRVec_from1 >(a) {}; //NOTE - how to do it so that direct nested brace initializer would work? explicit CyclePerm(const NRPerm &rhs); bool is_valid() const; //is it really a permutation bool is_identity() const; //no cycles of length > 1 void identity() {this->resize(0);}; CyclePerm inverse() const; //reverse all cycles int parity() const; //negative if having odd number of even-length cycles T max() const {T m=0; for(int i=1; i<=this->size(); ++i) {T mm= (*this)[i].max(); if(mm>m) m=mm;} return m;} CompressedPartition cycles(const T n) const; void readfrom(const std::string &line); CyclePerm operator*(const CyclePerm &q) const; //q is rhs and applied first, this applied second NRPerm operator*(const NRPerm &r) const; CyclePerm conjugate_by(const CyclePerm &q) const; //q^-1 p q PERM_RANK_TYPE order() const; //lcm of cycle lengths bool operator==(const CyclePerm &rhs) const {return NRPerm(*this) == NRPerm(rhs);}; //cycle representation is not unique, cannot inherit operator== from NRVec void simplify(bool keep1=false); //remove cycles of size 0 or 1 CyclePerm pow_simple(const int n) const {return CyclePerm(NRPerm(*this).pow(n));}; //do not call power() with our operator* CyclePerm pow(const int n, const bool keep1=false) const; //a more efficient algorithm }; template T gcd(T big, T small) { if(big==0) { if(small==0) laerror("bad arguments in gcd"); return small; } if(small==0) return big; if(small==1||big==1) return 1; T help; if(small>big) {help=big; big=small; small=help;} do { help=small; small= big%small; big=help; } while(small != 0); return big; } template inline T lcm(T a, T b) { return (a/gcd(a,b))*b; } template std::istream & operator>>(std::istream &s, CyclePerm &x); template std::ostream & operator<<(std::ostream &s, const CyclePerm &x); //compressed partitions stored as #of 1s, #of 2s, etc. template class CompressedPartition : public NRVec_from1 { public: CompressedPartition(): NRVec_from1() {}; template explicit CompressedPartition(const T (&a)[SIZE]) : NRVec_from1(a) {}; CompressedPartition(const int n) : NRVec_from1(n) {}; T sum() const {T s=0; for(int i=1; i<=this->size(); ++i) s += i*(*this)[i]; return s;} T nparts() const {T s=0; for(int i=1; i<=this->size(); ++i) s += (*this)[i]; return s;} T nclasses() const {T s=0; for(int i=1; i<=this->size(); ++i) if((*this)[i]) ++s; return s;} bool is_valid() const {return this->size() == this->sum();} explicit CompressedPartition(const Partition &rhs) : NRVec_from1(rhs.size()) {this->clear(); for(int i=1; i<=rhs.size(); ++i) if(!rhs[i]) break; else (*this)[rhs[i]]++; } PERM_RANK_TYPE Sn_class_size() const; int parity() const; //of a permutation with given cycle lengths, returns +/- 1 }; template std::ostream & operator<<(std::ostream &s, const CompressedPartition &x); template class Partition : public NRVec_from1 { public: Partition(): NRVec_from1() {}; template explicit Partition(const T (&a)[SIZE]) : NRVec_from1(a) {}; Partition(const int n) : NRVec_from1(n) {}; T nparts() const {T s=0; for(int i=1; i<=this->size(); ++i) if((*this)[i]) ++s; return s;} bool is_valid() const {if(this->size() != this->sum()) return false; for(int i=2; i<=this->size(); ++i) if((*this)[i]>(*this)[i-1]) return false; return true; } explicit Partition(const CompressedPartition &rhs) : NRVec_from1(rhs.size()) {this->clear(); int ithru=0; for(int i=rhs.size(); i>=1; --i) for(int j=0; j &x); //extract a partition as a shape of Young tableaux Partition adjoint() const; //also called conjugate partition PERM_RANK_TYPE Sn_irrep_dim() const; PERM_RANK_TYPE Un_irrep_dim(const int n) const; PERM_RANK_TYPE generate_all(void (*callback)(const Partition&), int nparts=0); //nparts <0 means at most to -nparts int parity() const; //of a permutation with given cycle lengths, returns +/- 1 }; template extern T Sn_character(const Partition &irrep, const Partition &cclass); template inline T Sn_character(const CompressedPartition &irrep, const CompressedPartition &cclass) { return Sn_character(Partition(irrep),Partition(cclass)); } template class YoungTableaux : public NRVec_from1 > { public: YoungTableaux() : NRVec_from1 >() {}; explicit YoungTableaux(const Partition &frame); template explicit YoungTableaux(const NRVec_from1 (&a)[SIZE]) : NRVec_from1 >(a) {}; //NOTE - how to do it so that direct nested brace initializer would work? bool is_valid() const; //check whether its shape forms a partition int nrows() const {return this->size();} int ncols() const {return (*this)[1].size();} bool is_standard() const; //is it filled in standard way (possibly with repeated numbers) T sum() const; //get back sum of the partition T max() const; //get back highest number filled in NRVec_from1 yamanouchi() const; //yamanouchi symbol T character_contribution(int ncyc=0) const; //contribution of filled tableaux to Sn character PERM_RANK_TYPE generate_all_standard(void (*callback)(const YoungTableaux&)); PermutationAlgebra young_operator() const; //generate young operator for a standard tableaux }; template std::ostream & operator<<(std::ostream &s, const YoungTableaux &x); extern PERM_RANK_TYPE partitions(int n, int k= -1); //enumerate partitions to k parts; k== -1 for total # of partitions //Sn character table template class Sn_characters { public: T n; NRVec_from1 > classes; NRVec_from1 > irreps; //can be in different order than classes NRVec_from1 classsizes; NRMat_from1 chi; //characters Sn_characters(const int n0); //compute the table bool is_valid() const; //check internal consistency T irrepdim(T i) const {return chi(i,1);}; T sumirrepdims() const {T s=0; for(T i=1; i<=chi.nrows(); ++i) s+=irrepdim(i); return s;}; }; template class Polynomial; //forward declaration template class CycleIndex { public: NRVec_from1 > classes; NRVec_from1 classsizes; CycleIndex(const Sn_characters &rhs): classes(rhs.classes),classsizes(rhs.classsizes) {}; bool is_valid() const; //check internal consistency Polynomial substitute(const Polynomial &p, PERM_RANK_TYPE *denom) const; }; template extern std::ostream & operator<<(std::ostream &s, const Sn_characters &c); template const NRVec NRVec::permuted(const NRPerm &p, const bool inverse) const { #ifdef DEBUG if(!p.is_valid()) laerror("invalid permutation of vector"); #endif int n=p.size(); if(n!=(*this).size()) laerror("incompatible permutation and vector"); #ifdef CUDALA if(this->getlocation() != cpu || p.getlocation() != cpu ) laerror("permutations can be done only in CPU memory"); #endif NRVec r(n); if(inverse) for(int i=1; i<=n; ++i) r[i-1] = v[p[i]-1]; else for(int i=1; i<=n; ++i) r[p[i]-1] = v[i-1]; return r; } template PermutationAlgebra general_antisymmetrizer(const NRVec > &groups, int restriction_type=0, bool inverted=false); }//namespace #endif