/* LA: linear algebra C++ interface library Copyright (C) 2022 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "contfrac.h" #include "permutation.h" #include #include #include #include namespace LA { template ContFrac::ContFrac(double x, const int n, const T thres) : NRVec(n+1) { for(int i=0; i<=n; ++i) { NRVec::v[i]=floor(x); x -= NRVec::v[i]; double y= 1./x; if(x==0. || (thres && fabs(y)>thres)) {resize(i,true); return;} x=y; } } //we have to recursively first determine length and then allocate and fill the values during recursion unwinding template static void cf_helper(ContFrac *me, T p, T q, int level) { T div=p/q; { T rem=p%q; if(rem) cf_helper(me,q,rem,level+1); else me->resize(level); } (*me)[level]=div; } template ContFrac::ContFrac(const T p, const T q) : NRVec() { cf_helper(this,p,q,0); } template ContFrac ContFrac::reciprocal() const { int n=this->length(); if((*this)[0] == 0) { ContFrac r(n-1); for(int i=1; i<=n; ++i) r[i-1] = (*this)[i]; return r; } else { ContFrac r(n+1); r[0]=0; for(int i=0; i<=n; ++i) r[i+1] = (*this)[i]; return r; } } template void ContFrac::convergent(T *p, T*q, const int trunc) const { int top=this->length(); if(trunc != -1) top=trunc; NRVec hh(top+3),kk(top+3); T *h= &hh[2]; T *k= &kk[2]; //start for recurrent relations h[-2]=k[-1]=0; h[-1]=k[-2]=1; for(int i=0; i<=top; ++i) { if(i>0 && (*this)[i]==0) //terminate by 0 which means infinity if not canonically shortened { *p=h[i-1]; *q=k[i-1]; return; } h[i] = (*this)[i]*h[i-1] + h[i-2]; k[i] = (*this)[i]*k[i-1] + k[i-2]; } *p=h[top]; *q=k[top]; } template double ContFrac::value(const int trunc) const { T p,q; convergent(&p,&q,trunc); double x=p; x/=q; return x; } template void ContFrac::canonicalize() { int n=this->length(); if(n==0) return; this->copyonwrite(); if((*this)[n]==1) {(*this)[n]=0; ++(*this)[n-1];} //avoid deepest 1/1 for(int i=1; i<=n; ++i) //truncate if possible { if((*this)[i]==0) //convention for infinity { resize(i-1,true); return; } } } template Homographic Homographic::input(const T &z, const bool inf) const { Homographic hnew; if(inf) //effective infinity, end of input { hnew.v[0][0]=hnew.v[0][1]=v[0][1]; hnew.v[1][0]=hnew.v[1][1]=v[1][1]; } else { hnew.v[0][0]=v[0][1]; hnew.v[1][0]=v[1][1]; hnew.v[0][1]=v[0][0]+v[0][1]* z; hnew.v[1][1]=v[1][0]+v[1][1]* z; } return hnew; } template Homographic Homographic::output(const T &z) const { Homographic hnew; hnew.v[0][0]=v[1][0]; hnew.v[0][1]=v[1][1]; hnew.v[1][0]=v[0][0]-v[1][0]*z; hnew.v[1][1]=v[0][1]-v[1][1]*z; return hnew; } template bool Homographic::outputready(T &z) const { bool inf=0; T q0,q1; if(v[1][0]==0) inf=1; else q0=v[0][0]/v[1][0]; if(v[1][1]==0) inf=1; else q1=v[0][1]/v[1][1]; if(!inf && q0==q1) {z=q0; return true;} return false; } template bool Homographic::terminate() const { return v[1][0]==0&&v[1][1]==0; } template ContFrac Homographic::value(const ContFrac&x) const { Homographic h(*this); std::list l; for(typename ContFrac::iterator px=x.begin(); px!=x.beyondend(); ++px) { //digest next input term h=h.input(*px,px==x.end()|| px!=x.begin()&& *px==0); //output as much as possible T out; while(h.outputready(out)) { l.push_back(out); h=h.output(out); } //terminate if exhausted if(h.terminate()) { if(px!=x.end()) laerror("unexpected termination in Homographic::value"); break; } } return ContFrac(l); } template BiHomographic BiHomographic::inputx(const T &x, const bool inf) const { BiHomographic hnew; for(int i=0; i<2; ++i) { hnew.v[i][0][0]= v[i][0][1]; hnew.v[i][0][1]= inf?v[i][0][1] : v[i][0][0]+v[i][0][1]*x; hnew.v[i][1][0]= v[i][1][1]; hnew.v[i][1][1]= inf?v[i][1][1] : v[i][1][0]+v[i][1][1]*x; } return hnew; } template BiHomographic BiHomographic::inputy(const T &y, const bool inf) const { BiHomographic hnew; for(int i=0; i<2; ++i) { hnew.v[i][0][0]= v[i][1][0]; hnew.v[i][0][1]= v[i][1][1]; hnew.v[i][1][0]= inf?v[i][1][0] : v[i][0][0]+v[i][1][0]*y; hnew.v[i][1][1]= inf?v[i][1][1] : v[i][0][1]+v[i][1][1]*y; } return hnew; } template BiHomographic BiHomographic::output(const T &z) const { BiHomographic hnew; for(int i=0; i<2; ++i) for(int j=0; j<2; ++j) { hnew.v[0][i][j]= v[1][i][j]; hnew.v[1][i][j]= v[0][i][j] - v[1][i][j]*z; } return hnew; } template int BiHomographic::inputselect() const { if(v[1][0][0]==0) { if(v[1][0][1]==0) return 1; else return 0; } if(v[1][0][1]==0) return 0; if(v[1][1][0]==0) return 1; if(MYABS(v[0][0][1]/v[1][0][1] - v[0][0][0]/v[1][0][0]) > MYABS(v[0][1][0]/v[1][1][0] - v[0][0][0]/v[1][0][0])) return 0; return 1; } template bool BiHomographic::outputready(T &z) const { T q[2][2]; for(int i=0; i<2; ++i) for(int j=0; j<2; ++j) { if(v[1][i][j]==0) return false; else q[i][j]=v[0][i][j]/v[1][i][j]; if(q[i][j]!=q[0][0]) return false; } z=q[0][0]; return true; } template bool BiHomographic::terminate() const { return v[1][0][0]==0&&v[1][0][1]==0&&v[1][1][0]==0&&v[1][1][1]==0; } template ContFrac BiHomographic::value(const ContFrac&x, const ContFrac&y) const { BiHomographic h(*this); std::list l; typename ContFrac::iterator px=x.begin(); typename ContFrac::iterator py=y.begin(); do { //select next input term int which; if(px==x.beyondend()) which=1; else if(py==y.beyondend()) which=0; else which = h.inputselect(); if(which) {h=h.inputy(*py,py==y.end()|| py!=y.begin()&& *py==0); ++py;} else {h=h.inputx(*px,px==x.end()|| px!=x.begin()&& *px==0); ++px;} //output as much as possible T out; while(h.outputready(out)) { l.push_back(out); h=h.output(out); } //terminate if exhausted if(h.terminate()) { if(px!=x.end()&&px!=x.beyondend() || py!=y.end()&&py!=y.beyondend()) laerror("unexpected termination in Homographic::value"); break; } } while(px!=x.beyondend() || py!=y.beyondend()); return ContFrac(l); } template void Rational::simplify() { if(den<0) { num= -num; den= -den; } T g=gcd(num,den); if(MYABS(g)>1) { num/=g; den/=g; } } template Rational & Rational::operator*=(const T &rhs) { T r=rhs; T g=gcd(r,den); if(MYABS(g)>1) { r/=g; den/=g; } num*=r; return *this; } template Rational & Rational::operator/=(const T &rhs) { T r=rhs; T g=gcd(r,num); if(MYABS(g)>1) { r/=g; num/=g; } den*=r; return *this; } template Rational Rational::operator+(const Rational &rhs) const { Rational r; r.den = lcm(den,rhs.den); r.num = num*(r.den/den) + rhs.num*(r.den/rhs.den); r.simplify(); return r; } template Rational Rational::operator-(const Rational &rhs) const { Rational r; r.den = lcm(den,rhs.den); r.num = num*(r.den/den) - rhs.num*(r.den/rhs.den); r.simplify(); return r; } template Rational & Rational::operator*=(const Rational &rhs) { Rational r(rhs); T g; g=gcd(num,r.den); if(MYABS(g)>1) { num/=g; r.den/=g; } g=gcd(den,r.num); if(MYABS(g)>1) { den/=g; r.num/=g; } num*=r.num; den*=r.den; if(den<0) {den= -den; num= -num;} return *this; } /***************************************************************************//** * forced instantization in the corresponding object file ******************************************************************************/ template class Rational; template class Rational; template class Rational; template class ContFrac; template class ContFrac; template class ContFrac; template class Homographic; template class Homographic; template class Homographic; template class BiHomographic; template class BiHomographic; template class BiHomographic; #define INSTANTIZE(T) \ INSTANTIZE(int) INSTANTIZE(unsigned int) }//namespace