/* LA: linear algebra C++ interface library Copyright (C) 2020 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "vecmat3.h" #ifndef QUAT_NO_RANDOM #include "la_random.h" #endif namespace LA_Vecmat3 { //http://en.wikipedia.org/wiki/Fast_inverse_square_root float fast_sqrtinv(float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // what the fuck? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; } template<> Vec3 & Vec3::fast_normalize(void) {*this *= fast_sqrtinv(normsqr()); return *this;}; template Vec3& Vec3::fast_normalize(void) {normalize(); return *this;}; template Mat3 Vec3::outer(const Vec3 &rhs) const { Mat3 m; m[0][0]=q[0]*rhs.q[0]; m[0][1]=q[0]*rhs.q[1]; m[0][2]=q[0]*rhs.q[2]; m[1][0]=q[1]*rhs.q[0]; m[1][1]=q[1]*rhs.q[1]; m[1][2]=q[1]*rhs.q[2]; m[2][0]=q[2]*rhs.q[0]; m[2][1]=q[2]*rhs.q[1]; m[2][2]=q[2]*rhs.q[2]; return m; } template void Vec3::inertia(Mat3 &m, const T weight) const { T r2 = q[0]*q[0]+q[1]*q[1]+q[2]*q[2]; m[0][0] -= weight*(q[0]*q[0]-r2); m[0][1] -= weight*q[0]*q[1]; m[0][2] -= weight*q[0]*q[2]; m[1][0] -= weight*q[1]*q[0]; m[1][1] -= weight*(q[1]*q[1]-r2); m[1][2] -= weight*q[1]*q[2]; m[2][0] -= weight*q[2]*q[0]; m[2][1] -= weight*q[2]*q[1]; m[2][2] -= weight*(q[2]*q[2]-r2); } template const Vec3 Vec3::operator*(const Mat3 &rhs) const { Vec3 r; r[0] = q[0]*rhs.q[0][0] + q[1]*rhs.q[1][0] + q[2]*rhs.q[2][0]; r[1] = q[0]*rhs.q[0][1] + q[1]*rhs.q[1][1] + q[2]*rhs.q[2][1]; r[2] = q[0]*rhs.q[0][2] + q[1]*rhs.q[1][2] + q[2]*rhs.q[2][2]; return r; }; template const Vec3 Vec3::timesT(const Mat3 &rhs) const { Vec3 r; r[0] = q[0]*rhs.q[0][0] + q[1]*rhs.q[0][1] + q[2]*rhs.q[0][2]; r[1] = q[0]*rhs.q[1][0] + q[1]*rhs.q[1][1] + q[2]*rhs.q[1][2]; r[2] = q[0]*rhs.q[2][0] + q[1]*rhs.q[2][1] + q[2]*rhs.q[2][2]; return r; }; template Mat3& Mat3::operator+=(const Mat3 &rhs) { q[0][0]+=rhs.q[0][0];q[0][1]+=rhs.q[0][1];q[0][2]+=rhs.q[0][2]; q[1][0]+=rhs.q[1][0];q[1][1]+=rhs.q[1][1];q[1][2]+=rhs.q[1][2]; q[2][0]+=rhs.q[2][0];q[2][1]+=rhs.q[2][1];q[2][2]+=rhs.q[2][2]; return *this; } template Mat3& Mat3::operator-=(const Mat3 &rhs) { q[0][0]-=rhs.q[0][0];q[0][1]-=rhs.q[0][1];q[0][2]-=rhs.q[0][2]; q[1][0]-=rhs.q[1][0];q[1][1]-=rhs.q[1][1];q[1][2]-=rhs.q[1][2]; q[2][0]-=rhs.q[2][0];q[2][1]-=rhs.q[2][1];q[2][2]-=rhs.q[2][2]; return *this; } template const Mat3 Mat3::operator*(const Mat3 &rhs) const { Mat3 r; r[0][0]= q[0][0]*rhs.q[0][0] + q[0][1]*rhs.q[1][0] + q[0][2]*rhs.q[2][0]; r[0][1]= q[0][0]*rhs.q[0][1] + q[0][1]*rhs.q[1][1] + q[0][2]*rhs.q[2][1]; r[0][2]= q[0][0]*rhs.q[0][2] + q[0][1]*rhs.q[1][2] + q[0][2]*rhs.q[2][2]; r[1][0]= q[1][0]*rhs.q[0][0] + q[1][1]*rhs.q[1][0] + q[1][2]*rhs.q[2][0]; r[1][1]= q[1][0]*rhs.q[0][1] + q[1][1]*rhs.q[1][1] + q[1][2]*rhs.q[2][1]; r[1][2]= q[1][0]*rhs.q[0][2] + q[1][1]*rhs.q[1][2] + q[1][2]*rhs.q[2][2]; r[2][0]= q[2][0]*rhs.q[0][0] + q[2][1]*rhs.q[1][0] + q[2][2]*rhs.q[2][0]; r[2][1]= q[2][0]*rhs.q[0][1] + q[2][1]*rhs.q[1][1] + q[2][2]*rhs.q[2][1]; r[2][2]= q[2][0]*rhs.q[0][2] + q[2][1]*rhs.q[1][2] + q[2][2]*rhs.q[2][2]; return r; } template const Mat3 Mat3::Ttimes(const Mat3 &rhs) const { Mat3 r; r[0][0]= q[0][0]*rhs.q[0][0] + q[1][0]*rhs.q[1][0] + q[2][0]*rhs.q[2][0]; r[0][1]= q[0][0]*rhs.q[0][1] + q[1][0]*rhs.q[1][1] + q[2][0]*rhs.q[2][1]; r[0][2]= q[0][0]*rhs.q[0][2] + q[1][0]*rhs.q[1][2] + q[2][0]*rhs.q[2][2]; r[1][0]= q[0][1]*rhs.q[0][0] + q[1][1]*rhs.q[1][0] + q[2][1]*rhs.q[2][0]; r[1][1]= q[0][1]*rhs.q[0][1] + q[1][1]*rhs.q[1][1] + q[2][1]*rhs.q[2][1]; r[1][2]= q[0][1]*rhs.q[0][2] + q[1][1]*rhs.q[1][2] + q[2][1]*rhs.q[2][2]; r[2][0]= q[0][2]*rhs.q[0][0] + q[1][2]*rhs.q[1][0] + q[2][2]*rhs.q[2][0]; r[2][1]= q[0][2]*rhs.q[0][1] + q[1][2]*rhs.q[1][1] + q[2][2]*rhs.q[2][1]; r[2][2]= q[0][2]*rhs.q[0][2] + q[1][2]*rhs.q[1][2] + q[2][2]*rhs.q[2][2]; return r; } template const Mat3 Mat3::timesT(const Mat3 &rhs) const { Mat3 r; r[0][0]= q[0][0]*rhs.q[0][0] + q[0][1]*rhs.q[0][1] + q[0][2]*rhs.q[0][2]; r[0][1]= q[0][0]*rhs.q[1][0] + q[0][1]*rhs.q[1][1] + q[0][2]*rhs.q[1][2]; r[0][2]= q[0][0]*rhs.q[2][0] + q[0][1]*rhs.q[2][1] + q[0][2]*rhs.q[2][2]; r[1][0]= q[1][0]*rhs.q[0][0] + q[1][1]*rhs.q[0][1] + q[1][2]*rhs.q[0][2]; r[1][1]= q[1][0]*rhs.q[1][0] + q[1][1]*rhs.q[1][1] + q[1][2]*rhs.q[1][2]; r[1][2]= q[1][0]*rhs.q[2][0] + q[1][1]*rhs.q[2][1] + q[1][2]*rhs.q[2][2]; r[2][0]= q[2][0]*rhs.q[0][0] + q[2][1]*rhs.q[0][1] + q[2][2]*rhs.q[0][2]; r[2][1]= q[2][0]*rhs.q[1][0] + q[2][1]*rhs.q[1][1] + q[2][2]*rhs.q[1][2]; r[2][2]= q[2][0]*rhs.q[2][0] + q[2][1]*rhs.q[2][1] + q[2][2]*rhs.q[2][2]; return r; } template const Mat3 Mat3::TtimesT(const Mat3 &rhs) const { Mat3 r; r[0][0]= q[0][0]*rhs.q[0][0] + q[1][0]*rhs.q[0][1] + q[2][0]*rhs.q[0][2]; r[0][1]= q[0][0]*rhs.q[1][0] + q[1][0]*rhs.q[1][1] + q[2][0]*rhs.q[1][2]; r[0][2]= q[0][0]*rhs.q[2][0] + q[1][0]*rhs.q[2][1] + q[2][0]*rhs.q[2][2]; r[1][0]= q[0][1]*rhs.q[0][0] + q[1][1]*rhs.q[0][1] + q[2][1]*rhs.q[0][2]; r[1][1]= q[0][1]*rhs.q[1][0] + q[1][1]*rhs.q[1][1] + q[2][1]*rhs.q[1][2]; r[1][2]= q[0][1]*rhs.q[2][0] + q[1][1]*rhs.q[2][1] + q[2][1]*rhs.q[2][2]; r[2][0]= q[0][2]*rhs.q[0][0] + q[1][2]*rhs.q[0][1] + q[2][2]*rhs.q[0][2]; r[2][1]= q[0][2]*rhs.q[1][0] + q[1][2]*rhs.q[1][1] + q[2][2]*rhs.q[1][2]; r[2][2]= q[0][2]*rhs.q[2][0] + q[1][2]*rhs.q[2][1] + q[2][2]*rhs.q[2][2]; return r; } template T Mat3::determinant() const { return q[0][0]*(q[2][2]*q[1][1]-q[2][1]*q[1][2])-q[1][0]*(q[2][2]*q[0][1]-q[2][1]*q[0][2])+q[2][0]*(q[1][2]*q[0][1]-q[1][1]*q[0][2]); } template void Mat3::transposeme() {T t; t=q[0][1]; q[0][1]=q[1][0]; q[1][0]=t; t=q[0][2]; q[0][2]=q[2][0]; q[2][0]=t; t=q[1][2]; q[1][2]=q[2][1]; q[2][1]=t;}; template const Mat3 Mat3::inverse() const { Mat3 r; r[0][0]= q[2][2]*q[1][1]-q[2][1]*q[1][2]; r[0][1]= -q[2][2]*q[0][1]+q[2][1]*q[0][2]; r[0][2]= q[1][2]*q[0][1]-q[1][1]*q[0][2]; r[1][0]= -q[2][2]*q[1][0]+q[2][0]*q[1][2]; r[1][1]= q[2][2]*q[0][0]-q[2][0]*q[0][2]; r[1][2]= -q[1][2]*q[0][0]+q[1][0]*q[0][2]; r[2][0]= q[2][1]*q[1][0]-q[2][0]*q[1][1]; r[2][1]= -q[2][1]*q[0][0]+q[2][0]*q[0][1]; r[2][2]= q[1][1]*q[0][0]-q[1][0]*q[0][1]; return r/determinant(); } template const Vec3 Mat3::operator*(const Vec3 &rhs) const { Vec3 r; r[0] = q[0][0]*rhs.q[0] + q[0][1]*rhs.q[1] + q[0][2]*rhs.q[2]; r[1] = q[1][0]*rhs.q[0] + q[1][1]*rhs.q[1] + q[1][2]*rhs.q[2]; r[2] = q[2][0]*rhs.q[0] + q[2][1]*rhs.q[1] + q[2][2]*rhs.q[2]; return r; } template const Vec3 Mat3::Ttimes(const Vec3 &rhs) const { Vec3 r; r[0] = q[0][0]*rhs.q[0] + q[1][0]*rhs.q[1] + q[2][0]*rhs.q[2]; r[1] = q[0][1]*rhs.q[0] + q[1][1]*rhs.q[1] + q[2][1]*rhs.q[2]; r[2] = q[0][2]*rhs.q[0] + q[1][2]*rhs.q[1] + q[2][2]*rhs.q[2]; return r; } //cf. https://en.wikipedia.org/wiki/Euler_angles and NASA paper cited therein template void euler2rotmat(const T *eul, Mat3 &a, const char *type, bool transpose, bool direction, bool reverse) { T c2=cos(eul[1]); T s2=sin(eul[1]); T c1=cos(eul[reverse?2:0]); T s1=sin(eul[reverse?2:0]); T c3=cos(eul[reverse?0:2]); T s3=sin(eul[reverse?0:2]); if(direction) {s1= -s1; s2= -s2; s3= -s3;} switch(Euler_case(type[0],type[1],type[2])) { case Euler_case('x','z','x'): { a[0][0]= c2; a[0][1]= -c3*s2; a[0][2]= s2*s3; a[1][0]= c1*s2; a[1][1]= c1*c2*c3-s1*s3; a[1][2]= -c3*s1-c1*c2*s3; a[2][0]= s1*s2; a[2][1]= c1*s3+c2*c3*s1; a[2][2]= c1*c3-c2*s1*s3; } break; case Euler_case('x','y','x'): { a[0][0]= c2; a[0][1]= s2*s3; a[0][2]= c3*s2; a[1][0]= s1*s2; a[1][1]= c1*c3-c2*s1*s3; a[1][2]= -c1*s3-c2*c3*s1; a[2][0]= -c1*s2; a[2][1]= c3*s1+c1*c2*s3; a[2][2]= c1*c2*c3-s1*s3; } break; case Euler_case('y','x','y'): { a[0][0]= c1*c3-c2*s1*s3; a[0][1]= s1*s2; a[0][2]= c1*s3+c2*c3*s1; a[1][0]= s2*s3; a[1][1]= c2; a[1][2]= -c3*s2; a[2][0]= -c3*s1-c1*c2*s3; a[2][1]= c1*s2; a[2][2]= c1*c2*c3-s1*s3; } break; case Euler_case('y','z','y'): { a[0][0]= c1*c2*c3-s1*s3; a[0][1]= -c1*s2; a[0][2]= c3*s1+c1*c2*s3; a[1][0]= c3*s2; a[1][1]= c2; a[1][2]= s2*s3; a[2][0]= -c1*s3; a[2][1]= s1*s2; a[2][2]= c1*c3-c2*s1*s3; } break; case Euler_case('z','y','z'): { a[0][0]= c1*c2*c3-s1*s3; a[0][1]= -c3*s1-c1*c2*s3; a[0][2]= c1*s2; a[1][0]= c1*s3+c2*c3*s1; a[1][1]= c1*c3-c2*s1*s3; a[1][2]= s1*s2; a[2][0]= -c3*s2; a[2][1]= s2*s3; a[2][2]= c2; } break; case Euler_case('z','x','z'): { a[0][0]= c1*c3-c2*s1*s3; a[0][1]= -c1*s3-c2*c3*s1; a[0][2]= s1*s2; a[1][0]= c3*s1+c1*c2*s3; a[1][1]= c1*c2*c3-s1*s3; a[1][2]= -c1*s2; a[2][0]= s2*s3; a[2][1]= c3*s2; a[2][2]= c2; } break; case Euler_case('x','z','y'): { a[0][0]= c2*c3; a[0][1]= -s2; a[0][2]= c2*s3; a[1][0]= s1*s3+c1*c3*s2; a[1][1]= c1*c2; a[1][2]= c1*s2*s3-c3*s1; a[2][0]= c3*s1*s2-c1*s3; a[2][1]= c2*s1; a[2][2]= c1*c3+s1*s2*s3; } break; case Euler_case('x','y','z'): { a[0][0]= c2*c3; a[0][1]= -c2*s3; a[0][2]= s2; a[1][0]= c1*s3+c3*s1*s2; a[1][1]= c1*c3-s1*s2*s3; a[1][2]= -c2*s1; a[2][0]= s1*s3-c1*c3*s2; a[2][1]= c3*s1+c1*s2*s3; a[2][2]= c1*c2; } break; case Euler_case('y','x','z'): { a[0][0]= c1*c3+s1*s2*s3; a[0][1]= c3*s1*s2-c1*s3; a[0][2]= c2*s1; a[1][0]= c2*s3; a[1][1]= c2*c3; a[1][2]= -s2; a[2][0]= c1*s2*s3-c3*s1; a[2][1]= c1*c3*s2+s1*s3; a[2][2]= c1*c2; } break; case Euler_case('y','z','x'): { a[0][0]= c1*c2; a[0][1]= s1*s3-c1*c3*s2; a[0][2]= c3*s1+c1*s2*s3; a[1][0]= s2; a[1][1]= c2*c3; a[1][2]= -c2*s3; a[2][0]= -c2*s1; a[2][1]= c1*s3+c3*s1*s2; a[2][2]= c1*c3-s1*s2*s3; } break; case Euler_case('z','y','x'): { a[0][0]= c1*c2; a[0][1]= c1*s2*s3-c3*s1; a[0][2]= s1*s2+c1*c3*s2; a[1][0]= c2*s1; a[1][1]= c1*c3+s1*s2*s3; a[1][2]= c3*s1*s2-c1*s3; a[2][0]= -s2; a[2][1]= c2*s3; a[2][2]= c2*c3; } break; case Euler_case('z','x','y'): { a[0][0]= c1*c3-s1*s2*s3; a[0][1]= -c2*s1; a[0][2]= c1*s3+c3*s1*s2; a[1][0]= c3*s1+c1*s2*s3; a[1][1]= c1*c2; a[1][2]= s1*s3-c1*c3*s2; a[2][0]= -c2*s3; a[2][1]= s2; a[2][2]= c2*c3; } break; }//switch if(transpose) a.transposeme(); } template void rotmat2euler(T *eul, const Mat3 &a, const char *type, bool transpose, bool direction, bool reverse) { T m11=a[0][0]; T m22=a[1][1]; T m33=a[2][2]; T m12=transpose?a[1][0]:a[0][1]; T m21=transpose?a[0][1]:a[1][0]; T m13=transpose?a[2][0]:a[0][2]; T m31=transpose?a[0][2]:a[2][0]; T m23=transpose?a[2][1]:a[1][2]; T m32=transpose?a[1][2]:a[2][1]; switch(Euler_case(type[0],type[1],type[2])) { case Euler_case('x','z','x'): { eul[0]=atan2(m31,m21); eul[1]=atan2(sqrt(1-m11*m11),m11); eul[2]=atan2(m13,-m12); } break; case Euler_case('x','y','x'): { eul[0]=atan2(m21,-m31); eul[1]=atan2(sqrt(1-m11*m11),m11); eul[2]=atan2(m12,m13); } break; case Euler_case('y','x','y'): { eul[0]=atan2(m12,m32); eul[1]=atan2(sqrt(1-m22*m22),m22); eul[2]=atan2(m21,-m23); } break; case Euler_case('y','z','y'): { eul[0]=atan2(m32,-m12); eul[1]=atan2(sqrt(1-m22*m22),m22); eul[2]=atan2(m23,m21); } break; case Euler_case('z','y','z'): { eul[0]=atan2(m23,m13); eul[1]=atan2(sqrt(1-m33*m33),m33); eul[2]=atan2(m32,-m31); } break; case Euler_case('z','x','z'): { eul[0]=atan2(m13,-m23); eul[1]=atan2(sqrt(1-m33*m33),m33); eul[2]=atan2(m31,m32); } break; case Euler_case('x','z','y'): { eul[0]=atan2(m32,m22); eul[1]=atan2(-m12,sqrt(1-m12*m12)); eul[2]=atan2(m13,m11); } break; case Euler_case('x','y','z'): { eul[0]=atan2(-m23,m33); eul[1]=atan2(m13,sqrt(1-m13*m13)); eul[2]=atan2(-m12,m11); } break; case Euler_case('y','x','z'): { eul[0]=atan2(m31,m33); eul[1]=atan2(-m23,sqrt(1-m23*m23)); eul[2]=atan2(m21,m22); } break; case Euler_case('y','z','x'): { eul[0]=atan2(-m31,m11); eul[1]=atan2(m21,sqrt(1-m21*m21)); eul[2]=atan2(-m23,m22); } break; case Euler_case('z','y','x'): { eul[0]=atan2(m21,m11); eul[1]=atan2(-m31,sqrt(1-m31*m31)); eul[2]=atan2(m32,m33); } break; case Euler_case('z','x','y'): { eul[0]=atan2(-m12,m22); eul[1]=atan2(m32,sqrt(1-m32*m32)); eul[2]=atan2(-m31,m33); } break; }//switch if(reverse) { T t=eul[0]; eul[0]=eul[2]; eul[2]=t; } if(direction) { eul[0] *= (T)-1; eul[1] *= (T)-1; eul[2] *= (T)-1; } } //stream I/O #ifndef AVOID_STDSTREAM template std::istream& operator>>(std::istream &s, Vec3 &x) { s >> x.q[0]; s >> x.q[1]; s >> x.q[2]; return s; } template std::ostream& operator<<(std::ostream &s, const Vec3 &x) { s << x.q[0]<<" "; s << x.q[1]<<" "; s << x.q[2]; return s; } template std::istream& operator>>(std::istream &s, Mat3 &x) { s >> x.q[0][0]; s >> x.q[0][1]; s >> x.q[0][2]; s >> x.q[1][0]; s >> x.q[1][1]; s >> x.q[1][2]; s >> x.q[2][0]; s >> x.q[2][1]; s >> x.q[2][2]; return s; } template std::ostream& operator<<(std::ostream &s, const Mat3 &x) { s << x.q[0][0]<<" "<< x.q[0][1]<<" " << x.q[0][2]< void Mat3::symmetrize() { T tmp=(q[0][1]+q[1][0])/2; q[0][1]=q[1][0]=tmp; tmp=(q[0][2]+q[2][0])/2; q[0][2]=q[2][0]=tmp; tmp=(q[2][1]+q[1][2])/2; q[2][1]=q[1][2]=tmp; } #ifndef QUAT_NO_RANDOM template <> void Vec3::randomize(const double x) { for(int i=0;i<3;++i) q[i]=x*RANDDOUBLESIGNED(); } template <> void Mat3::randomize(const double x, const bool symmetric) { if(symmetric) for(int i=0;i<3;++i) for(int j=0; j<=i; ++j) q[j][i]=q[i][j]=x*RANDDOUBLESIGNED(); else for(int i=0;i<3;++i) for(int j=0; j<3; ++j) q[i][j]=x*RANDDOUBLESIGNED(); } #endif //eigensolver for 3x3 matrix by Joachim Kopp - analytic formula version, //might be unstable for ill-conditioned ones, then use other methods //cf. arxiv physics 0610206v3 // //// Numerical diagonalization of 3x3 matrcies //// Copyright (C) 2006 Joachim Kopp //// ---------------------------------------------------------------------------- //// This library is free software; you can redistribute it and/or //// modify it under the terms of the GNU Lesser General Public //// License as published by the Free Software Foundation; either //// version 2.1 of the License, or (at your option) any later version. //// //// This library is distributed in the hope that it will be useful, //// but WITHOUT ANY WARRANTY; without even the implied warranty of //// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU //// Lesser General Public License for more details. //// //// You should have received a copy of the GNU Lesser General Public //// License along with this library; if not, write to the Free Software //// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA //// ---------------------------------------------------------------------------- // //numeric_limits not available on some crosscompilers for small MCUs #ifdef QUAT_NO_DOUBLE #define NO_NUMERIC_LIMITS #endif #ifdef NO_NUMERIC_LIMITS #define DBL_EPSILON 1.19209290e-07f #else #define DBL_EPSILON std::numeric_limits::epsilon() #endif #define M_SQRT3 1.73205080756887729352744634151 // sqrt(3) #define SQR(x) ((x)*(x)) // x^2 // template void Mat3::eival_sym(Vec3 &w, const bool sortdown) const { T m, c1, c0; // Determine coefficients of characteristic poynomial. We write // | a d f | // A = | d* b e | // | f* e* c | T de = q[0][1] * q[1][2]; // d * e T dd = SQR(q[0][1]); // d^2 T ee = SQR(q[1][2]); // e^2 T ff = SQR(q[0][2]); // f^2 m = q[0][0] + q[1][1] + q[2][2]; c1 = (q[0][0]*q[1][1] + q[0][0]*q[2][2] + q[1][1]*q[2][2]) // a*b + a*c + b*c - d^2 - e^2 - f^2 - (dd + ee + ff); c0 = q[2][2]*dd + q[0][0]*ee + q[1][1]*ff - q[0][0]*q[1][1]*q[2][2] - 2.0 * q[0][2]*de; // c*d^2 + a*e^2 + b*f^2 - a*b*c - 2*f*d*e) T p, sqrt_p, q, c, s, phi; p = SQR(m) - 3.0*c1; q = m*(p - (3.0/2.0)*c1) - (27.0/2.0)*c0; sqrt_p = sqrt(abs(p)); phi = 27.0 * ( 0.25*SQR(c1)*(p - c1) + c0*(q + 27.0/4.0*c0)); phi = (1.0/3.0) * atan2(sqrt(abs(phi)), q); c = sqrt_p*cos(phi); s = (1.0/M_SQRT3)*sqrt_p*sin(phi); w[1] = (1.0/3.0)*(m - c); w[2] = w[1] + s; w[0] = w[1] + c; w[1] -= s; if(sortdown) { if(w[0]w[1]) {T tmp=w[0]; w[0]=w[1]; w[1]=tmp;} if(w[0]>w[2]) {T tmp=w[0]; w[0]=w[2]; w[2]=tmp;} if(w[1]>w[2]) {T tmp=w[1]; w[1]=w[2]; w[2]=tmp;} } } // Calculates the eigenvalues and normalized eigenvectors of a symmetric 3x3 // matrix A using Cardano's method for the eigenvalues and an analytical // method based on vector cross products for the eigenvectors. // Only the diagonal and upper triangular parts of A need to contain meaningful // values. However, all of A may be used as temporary storage and may hence be // destroyed. // ---------------------------------------------------------------------------- // Parameters: // A: The symmetric input matrix // Q: Storage buffer for eigenvectors // w: Storage buffer for eigenvalues // ---------------------------------------------------------------------------- // Return value: // 0: Success // -1: Error // ---------------------------------------------------------------------------- // Dependencies: // dsyevc3() // ---------------------------------------------------------------------------- // Version history: // v1.1 (12 Mar 2012): Removed access to lower triangualr part of A // (according to the documentation, only the upper triangular part needs // to be filled) // v1.0: First released version // ---------------------------------------------------------------------------- template void Mat3::eivec_sym(Vec3 &w, Mat3 &v, const bool sortdown) const { T norm; // Squared norm or inverse norm of current eigenvector T n0, n1; // Norm of first and second columns of A T n0tmp, n1tmp; // "Templates" for the calculation of n0/n1 - saves a few FLOPS T thresh; // Small number used as threshold for floating point comparisons T error; // Estimated maximum roundoff error in some steps T wmax; // The eigenvalue of maximum modulus T f, t; // Intermediate storage int i, j; // Loop counters // Calculate eigenvalues eival_sym(w,sortdown); Mat3 A(*this); //scratch copy wmax = fabs(w[0]); if ((t=fabs(w[1])) > wmax) wmax = t; if ((t=fabs(w[2])) > wmax) wmax = t; thresh = SQR(8.0 * DBL_EPSILON * wmax); // Prepare calculation of eigenvectors n0tmp = SQR(A[0][1]) + SQR(A[0][2]); n1tmp = SQR(A[0][1]) + SQR(A[1][2]); v[0][1] = A[0][1]*A[1][2] - A[0][2]*A[1][1]; v[1][1] = A[0][2]*A[0][1] - A[1][2]*A[0][0]; v[2][1] = SQR(A[0][1]); // Calculate first eigenvector by the formula // v[0] = (A - w[0]).e1 x (A - w[0]).e2 A[0][0] -= w[0]; A[1][1] -= w[0]; v[0][0] = v[0][1] + A[0][2]*w[0]; v[1][0] = v[1][1] + A[1][2]*w[0]; v[2][0] = A[0][0]*A[1][1] - v[2][1]; norm = SQR(v[0][0]) + SQR(v[1][0]) + SQR(v[2][0]); n0 = n0tmp + SQR(A[0][0]); n1 = n1tmp + SQR(A[1][1]); error = n0 * n1; if (n0 <= thresh) // If the first column is zero, then (1,0,0) is an eigenvector { v[0][0] = 1.0; v[1][0] = 0.0; v[2][0] = 0.0; } else if (n1 <= thresh) // If the second column is zero, then (0,1,0) is an eigenvector { v[0][0] = 0.0; v[1][0] = 1.0; v[2][0] = 0.0; } else if (norm < SQR(64.0 * DBL_EPSILON) * error) { // If angle between A[0] and A[1] is too small, don't use t = SQR(A[0][1]); // cross product, but calculate v ~ (1, -A0/A1, 0) f = -A[0][0] / A[0][1]; if (SQR(A[1][1]) > t) { t = SQR(A[1][1]); f = -A[0][1] / A[1][1]; } if (SQR(A[1][2]) > t) f = -A[0][2] / A[1][2]; norm = 1.0/sqrt(1 + SQR(f)); v[0][0] = norm; v[1][0] = f * norm; v[2][0] = 0.0; } else // This is the standard branch { norm = sqrt(1.0 / norm); for (j=0; j < 3; j++) v[j][0] = v[j][0] * norm; } // Prepare calculation of second eigenvector t = w[0] - w[1]; if (fabs(t) > 8.0 * DBL_EPSILON * wmax) { // For non-degenerate eigenvalue, calculate second eigenvector by the formula // v[1] = (A - w[1]).e1 x (A - w[1]).e2 A[0][0] += t; A[1][1] += t; v[0][1] = v[0][1] + A[0][2]*w[1]; v[1][1] = v[1][1] + A[1][2]*w[1]; v[2][1] = A[0][0]*A[1][1] - v[2][1]; norm = SQR(v[0][1]) + SQR(v[1][1]) + SQR(v[2][1]); n0 = n0tmp + SQR(A[0][0]); n1 = n1tmp + SQR(A[1][1]); error = n0 * n1; if (n0 <= thresh) // If the first column is zero, then (1,0,0) is an eigenvector { v[0][1] = 1.0; v[1][1] = 0.0; v[2][1] = 0.0; } else if (n1 <= thresh) // If the second column is zero, then (0,1,0) is an eigenvector { v[0][1] = 0.0; v[1][1] = 1.0; v[2][1] = 0.0; } else if (norm < SQR(64.0 * DBL_EPSILON) * error) { // If angle between A[0] and A[1] is too small, don't use t = SQR(A[0][1]); // cross product, but calculate v ~ (1, -A0/A1, 0) f = -A[0][0] / A[0][1]; if (SQR(A[1][1]) > t) { t = SQR(A[1][1]); f = -A[0][1] / A[1][1]; } if (SQR(A[1][2]) > t) f = -A[0][2] / A[1][2]; norm = 1.0/sqrt(1 + SQR(f)); v[0][1] = norm; v[1][1] = f * norm; v[2][1] = 0.0; } else { norm = sqrt(1.0 / norm); for (j=0; j < 3; j++) v[j][1] = v[j][1] * norm; } } else { // For degenerate eigenvalue, calculate second eigenvector according to // v[1] = v[0] x (A - w[1]).e[i] // // This would really get to complicated if we could not assume all of A to // contain meaningful values. A[1][0] = A[0][1]; A[2][0] = A[0][2]; A[2][1] = A[1][2]; A[0][0] += w[0]; A[1][1] += w[0]; for (i=0; i < 3; i++) { A[i][i] -= w[1]; n0 = SQR(A[0][i]) + SQR(A[1][i]) + SQR(A[2][i]); if (n0 > thresh) { v[0][1] = v[1][0]*A[2][i] - v[2][0]*A[1][i]; v[1][1] = v[2][0]*A[0][i] - v[0][0]*A[2][i]; v[2][1] = v[0][0]*A[1][i] - v[1][0]*A[0][i]; norm = SQR(v[0][1]) + SQR(v[1][1]) + SQR(v[2][1]); if (norm > SQR(256.0 * DBL_EPSILON) * n0) // Accept cross product only if the angle between { // the two vectors was not too small norm = sqrt(1.0 / norm); for (j=0; j < 3; j++) v[j][1] = v[j][1] * norm; break; } } } if (i == 3) // This means that any vector orthogonal to v[0] is an EV. { for (j=0; j < 3; j++) if (v[j][0] != 0.0) // Find nonzero element of v[0] ... { // ... and swap it with the next one norm = 1.0 / sqrt(SQR(v[j][0]) + SQR(v[(j+1)%3][0])); v[j][1] = v[(j+1)%3][0] * norm; v[(j+1)%3][1] = -v[j][0] * norm; v[(j+2)%3][1] = 0.0; break; } } } // Calculate third eigenvector according to // v[2] = v[0] x v[1] v[0][2] = v[1][0]*v[2][1] - v[2][0]*v[1][1]; v[1][2] = v[2][0]*v[0][1] - v[0][0]*v[2][1]; v[2][2] = v[0][0]*v[1][1] - v[1][0]*v[0][1]; } #undef SQR //end eigensolver for 3x3 matrix ///////////////////////////////////////////////////////////////////////////////////////////// template T Mat3::norm(const T scalar) const { T sum(0); for(int i=0; i<3; i++) for(int j=0; j<3; j++) { T tmp = q[i][j]; if(i == j) tmp -= scalar; sum += tmp*tmp; } return sqrt(sum); } //cf. https://en.wikipedia.org/wiki/3D_projection template void perspective(T *proj_xy, const Vec3 &point, const Mat3 &rot_angle, const Vec3 &camera, const Vec3 &plane_to_camera) { Vec3 d=rot_angle*point-camera; T scale = plane_to_camera[2]/d[2]; for(int i=0; i<2; ++i) proj_xy[i]= scale*d[i] + plane_to_camera[i]; } //force instantization #define INSTANTIZE(T) \ template class Vec3; \ template class Mat3; \ template void euler2rotmat(const T *eul, Mat3 &a, const char *type, bool transpose=0, bool direction=0, bool reverse=0); \ template void rotmat2euler(T *eul, const Mat3 &a, const char *type, bool transpose=0, bool direction=0, bool reverse=0); \ template void perspective(T *proj_xy, const Vec3 &point, const Mat3 &rot_angle, const Vec3 &camera, const Vec3 &plane_to_camera); \ #ifndef AVOID_STDSTREAM #define INSTANTIZE2(T) \ template std::istream& operator>>(std::istream &s, Vec3 &x); \ template std::ostream& operator<<(std::ostream &s, const Vec3 &x); \ template std::istream& operator>>(std::istream &s, Mat3 &x); \ template std::ostream& operator<<(std::ostream &s, const Mat3 &x); \ #endif INSTANTIZE(float) #ifndef QUAT_NO_DOUBLE INSTANTIZE(double) #endif #ifndef AVOID_STDSTREAM INSTANTIZE2(float) #ifndef QUAT_NO_DOUBLE INSTANTIZE2(double) #endif #endif }//namespace