/* LA: linear algebra C++ interface library Copyright (C) 2022 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "contfrac.h" #include "permutation.h" #include #include #include #include namespace LA { template ContFrac::ContFrac(double x, const int n, const T thres) : NRVec(n+1) { for(int i=0; i<=n; ++i) { NRVec::v[i]=floor(x); x -= NRVec::v[i]; double y= 1./x; if(x==0. || (thres && fabs(y)>thres)) {resize(i,true); return;} x=y; } } //we have to recursively first determine length and then allocate and fill the values during recursion unwinding template static void cf_helper(ContFrac *me, T p, T q, int level) { T div=p/q; { T rem=p%q; if(rem) cf_helper(me,q,rem,level+1); else me->resize(level); } (*me)[level]=div; } template ContFrac::ContFrac(const T p, const T q) : NRVec() { cf_helper(this,p,q,0); } template ContFrac ContFrac::reciprocal() const { int n=this->length(); if((*this)[0] == 0) { ContFrac r(n-1); for(int i=1; i<=n; ++i) r[i-1] = (*this)[i]; return r; } else { ContFrac r(n+1); r[0]=0; for(int i=0; i<=n; ++i) r[i+1] = (*this)[i]; return r; } } template void ContFrac::convergent(T *p, T*q, const int trunc) const { int top=this->length(); if(trunc != -1) top=trunc; NRVec hh(top+3),kk(top+3); T *h= &hh[2]; T *k= &kk[2]; //start for recurrent relations h[-2]=k[-1]=0; h[-1]=k[-2]=1; for(int i=0; i<=top; ++i) { if(i>0 && (*this)[i]==0) //terminate by 0 which means infinity if not canonically shortened { *p=h[i-1]; *q=k[i-1]; return; } h[i] = (*this)[i]*h[i-1] + h[i-2]; k[i] = (*this)[i]*k[i-1] + k[i-2]; } *p=h[top]; *q=k[top]; } template double ContFrac::value(const int trunc) const { T p,q; convergent(&p,&q,trunc); double x=p; x/=q; return x; } template void ContFrac::canonicalize() { int n=this->length(); if(n==0) return; this->copyonwrite(); if((*this)[n]==1) {(*this)[n]=0; ++(*this)[n-1];} //avoid deepest 1/1 for(int i=1; i<=n; ++i) //truncate if possible { if((*this)[i]==0) //convention for infinity { resize(i-1,true); return; } } } template ContFrac Homographic::value(const ContFrac&x) const { Homographic h(*this); std::list l; typename ContFrac::iterator px=x.begin(); do //scan all input { //digest next input term Homographic hnew; if(px==x.end()|| px!=x.begin()&& *px==0) //input is infinity { hnew.x[0][0]=hnew.x[0][1]=h.x[0][1]; hnew.x[1][0]=hnew.x[1][1]=h.x[1][1]; } else { hnew.x[0][0]=h.x[0][1]; hnew.x[1][0]=h.x[1][1]; hnew.x[0][1]=h.x[0][0]+h.x[0][1]* *px; hnew.x[1][1]=h.x[1][0]+h.x[1][1]* *px; } //std::cout<<"hnew\n"<< hnew.x[0][0]<<" "<< hnew.x[0][1]<<"\n"<< hnew.x[1][0]<<" "<< hnew.x[1][1]<<"\n"; //check if we are ready to output bool inf=0; T q0,q1; if(hnew.x[1][0]==0) inf=1; else q0=hnew.x[0][0]/hnew.x[1][0]; if(hnew.x[1][1]==0) inf=1; else q1=hnew.x[0][1]/hnew.x[1][1]; while(!inf && q0==q1) //ready to output { l.push_back(q0); //std::cout <<"out "< hnew2; hnew2.x[0][0]=hnew.x[1][0]; hnew2.x[0][1]=hnew.x[1][1]; hnew2.x[1][0]=hnew.x[0][0]-hnew.x[1][0]*q0; hnew2.x[1][1]=hnew.x[0][1]-hnew.x[1][1]*q0; //std::cout<<"hnew2\n"<< hnew2.x[0][0]<<" "<< hnew2.x[0][1]<<"\n"<< hnew2.x[1][0]<<" "<< hnew2.x[1][1]<<"\n"; hnew=hnew2; inf=0; if(hnew.x[1][0]==0) inf=1; else q0=hnew.x[0][0]/hnew.x[1][0]; if(hnew.x[1][1]==0) inf=1; else q1=hnew.x[0][1]/hnew.x[1][1]; } //termination if(hnew.x[1][0]==0&&hnew.x[1][1]==0) //terminate { //std::cout<<"terminate at "<