/* LA: linear algebra C++ interface library Copyright (C) 2022 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef _CONTFRAC_H #define _CONTFRAC_H #include "la_traits.h" #include "vec.h" namespace LA { //simple finite continued fraction class //NOTE: 0 on any position >0 means actually infinity; simplify() shortens the vector //presently implements just conversion to/from rationals and floats //maybe implement arithmetic by Gosper's method cf. https://perl.plover.com/classes/cftalk/TALK // template class ContFrac; //@@@basic rational arithmetics template class Rational { public: T num; T den; Rational(const T p, const T q) : num(p),den(q) {}; explicit Rational(const T (&a)[2]) :num(a[0]), den(a[1]) {}; Rational(const ContFrac &cf) {cf.convergent(&num,&den);}; }; template std::ostream & operator<<(std::ostream &s, const Rational &x) { s< class Homographic; template class BiHomographic; //@@@implement iterator and rewrite Homographic::value template class ContFrac : public NRVec { private: int size() const; //prevent confusion with vector size public: ContFrac(): NRVec() {}; template ContFrac(const T (&a)[SIZE]) : NRVec(a) {}; ContFrac(const NRVec &v) : NRVec(v) {}; //allow implicit conversion from NRVec ContFrac(const int n) : NRVec(n+1) {}; ContFrac(double x, const int n, const T thres=0); //might yield a non-canonical form ContFrac(const T p, const T q); //should yield a canonical form ContFrac(const Rational &r) : ContFrac(r.num,r.den) {}; void canonicalize(); void convergent(T *p, T*q, const int trunc= -1) const; Rational rational(const int trunc= -1) const {T p,q; convergent(&p,&q,trunc); return Rational(p,q);}; double value(const int trunc= -1) const; ContFrac reciprocal() const; int length() const {return NRVec::size()-1;}; void resize(const int n, const bool preserve=true) { int nold=length(); NRVec::resize(n+1,preserve); if(preserve) for(int i=nold+1; i<=n;++i) (*this)[i]=0; } ContFrac operator+(const Rational &rhs) const {Homographic h({{rhs.num,rhs.den},{rhs.den,0}}); return h.value(*this);}; ContFrac operator-(const Rational &rhs) const {Homographic h({{-rhs.num,rhs.den},{rhs.den,0}}); return h.value(*this);}; ContFrac operator*(const Rational &rhs) const {Homographic h({{0,rhs.num},{rhs.den,0}}); return h.value(*this);}; ContFrac operator/(const Rational &rhs) const {Homographic h({{0,rhs.den},{rhs.num,0}}); return h.value(*this);}; }; //for Gosper's arithmetic template class Homographic { public: T x[2][2]; //{{a,b},{c,d}} for (a+b.z)/(c+d.z) Homographic(){}; explicit Homographic(const T (&a)[2][2]) {memcpy(x,a,2*2*sizeof(T));}; ContFrac value(const ContFrac&x) const; }; template class BiHomographic { public: T x[2][2][2]; BiHomographic(){}; explicit BiHomographic(const T (&a)[2][2][2]) {memcpy(x,a,2*2*2*sizeof(T));}; ContFrac value(const ContFrac&x, const ContFrac&y) const; }; }//namespace #endif