/* LA: linear algebra C++ interface library Copyright (C) 2024 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "tensor.h" #include "laerror.h" #include "qsort.h" #include "miscfunc.h" #include namespace LA { LA_largeindex subindex(int *sign, const INDEXGROUP &g, const NRVec &I) //index of one subgroup { #ifdef DEBUG if(I.size()<=0) laerror("empty index group in subindex"); if(g.number!=I.size()) laerror("mismatch in the number of indices in a group"); for(int i=0; i= g.offset+g.range) laerror("index out of range in tensor subindex"); #endif switch(I.size()) //a few special cases for efficiency { case 0: *sign=0; return 0; break; case 1: *sign=1; return I[0]-g.offset; break; case 2: { *sign=1; if(g.symmetry==0) return (I[1]-g.offset)*g.range+I[0]-g.offset; LA_index i0,i1; if(I[0]>I[1]) {i1=I[0]; i0=I[1]; if(g.symmetry<0) *sign = -1;} else {i1=I[1]; i0=I[0];} i0 -= g.offset; i1 -= g.offset; if(g.symmetry<0) { if(i0==i1) {*sign=0; return -1;} return i1*(i1-1)/2+i0; } else { return i1*(i1+1)/2+i0; } } break; default: //general case { *sign=1; if(g.symmetry==0) //rectangular case { LA_largeindex r=0; for(int i=I.size()-1; i>=0; --i) { r*= g.range; r+= I[i]-g.offset; } return r; } } //compressed storage case NRVec II(I); II.copyonwrite(); if(g.offset!=0) II -= g.offset; int parity=netsort(II.size(),&II[0]); if(g.symmetry<0 && (parity&1)) *sign= -1; if(g.symmetry<0) //antisymmetric { for(int i=0; i inverse_subindex(const INDEXGROUP &g, LA_largeindex s) { NRVec I(g.number); if(g.number==1) {I[0]=s+g.offset; return I;} switch(g.symmetry) { case 0: for(int i=0; i0; --i) { I[i-1] = inverse_simplicial(i,s); s -= simplicial(i,I[i-1]); } break; case -1: for(int i=g.number-1; i>=0; --i) { I[i] = i + inverse_simplicial(i+1,s); s -= simplicial(i+1,I[i]-i); } break; default: laerror("illegal index symmetry"); } if(g.offset!=0) I += g.offset; return I; } template SUPERINDEX Tensor::inverse_index(LA_largeindex s) const { SUPERINDEX I(shape.size()); for(int g=shape.size()-1; g>=0; --g) { LA_largeindex groupindex; if(g>0) { groupindex = s/cumsizes[g]; s %= cumsizes[g]; } else groupindex=s; I[g] = inverse_subindex(shape[g],groupindex); } return I; } template LA_largeindex Tensor::index(int *sign, const SUPERINDEX &I) const { //check index structure and ranges #ifdef DEBUG if(I.size()!=shape.size()) laerror("mismatch in the number of tensor index groups"); for(int i=0; i= shape[i].offset+shape[i].range) { std::cerr<<"error in index group no. "< LA_largeindex Tensor::index(int *sign, const FLATINDEX &I) const { #ifdef DEBUG if(rank()!=I.size()) laerror("tensor rank mismatch in index"); #endif LA_largeindex r=0; *sign=1; int gstart=0; for(int g=0; g subI = I.subvector(gstart,gend); gstart=gend+1; LA_largeindex groupindex = subindex(&gsign,shape[g],subI); //std::cout <<"FLATINDEX TEST group "< LA_largeindex Tensor::vindex(int *sign, LA_index i1, va_list args) const { NRVec I(rank()); I[0]=i1; for(int i=1; i void Tensor::put(int fd) const { shape.put(fd,true); groupsizes.put(fd,true); cumsizes.put(fd,true); data.put(fd,true); } template void Tensor::get(int fd) { shape.get(fd,true); myrank=calcrank(); //is not stored but recomputed groupsizes.put(fd,true); cumsizes.get(fd,true); data.get(fd,true); } template class Tensor; template class Tensor >; }//namespace