/* LA: linear algebra C++ interface library Copyright (C) 2008-2020 Jiri Pittner or This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "quaternion.h" #include "vecmat3.h" using namespace LA_Quaternion; using namespace LA_Vecmat3; //do not replicate this code in each object file, therefore not in .h //and instantize the templates for the types needed template Quaternion Quaternion::operator*(const Quaternion &rhs) const { return Quaternion ( q[0]*rhs.q[0]-q[1]*rhs.q[1]-q[2]*rhs.q[2]-q[3]*rhs.q[3], q[0]*rhs.q[1]+q[1]*rhs.q[0]+q[2]*rhs.q[3]-q[3]*rhs.q[2], q[0]*rhs.q[2]+q[2]*rhs.q[0]+q[3]*rhs.q[1]-q[1]*rhs.q[3], q[0]*rhs.q[3]+q[3]*rhs.q[0]+q[1]*rhs.q[2]-q[2]*rhs.q[1] ); }; template Quaternion Quaternion::times_vec3(const T *rhs) const { return Quaternion ( -q[1]*rhs[0]-q[2]*rhs[1]-q[3]*rhs[2], q[0]*rhs[0]+q[2]*rhs[2]-q[3]*rhs[1], q[0]*rhs[1]+q[3]*rhs[0]-q[1]*rhs[2], q[0]*rhs[2]+q[1]*rhs[1]-q[2]*rhs[0] ); }; template Quaternion Quaternion::vec3_times(const T *lhs) const { return Quaternion ( -lhs[0]*q[1]-lhs[1]*q[2]-lhs[2]*q[3], lhs[0]*q[0]+lhs[1]*q[3]-lhs[2]*q[2], lhs[1]*q[0]+lhs[2]*q[1]-lhs[0]*q[3], lhs[2]*q[0]+lhs[0]*q[2]-lhs[1]*q[1] ); }; //basically the same code as in normquat2rotmat, but avoiding extra storage template void Quaternion::rotate(T *to, const T *from, Quaternion *grad) const { //some subexpression eliminations { T q00= q[0]*q[0]; T q11= q[1]*q[1]; T q22= q[2]*q[2]; T q33= q[3]*q[3]; to[0] = (q00+q11-q22-q33) * from[0]; to[1] = (q00+q22-q11-q33) * from[1]; to[2] = (q00+q33-q11-q22) * from[2]; } T q01= q[0]*q[1]; T q02= q[0]*q[2]; T q03= q[0]*q[3]; T q12= q[1]*q[2]; T q13= q[1]*q[3]; T q23= q[2]*q[3]; T f0=from[0]+from[0]; T f1=from[1]+from[1]; T f2=from[2]+from[2]; to[0] += (q12+q03)*f1; to[0] += (q13-q02)*f2; to[1] += (q12-q03)*f0; to[1] += (q23+q01)*f2; to[2] += (q13+q02)*f0; to[2] += (q23-q01)*f1; /* to[0] = (2*q[0]*q[0]-1+2*q[1]*q[1]) * from[0] + 2*(q[1]*q[2]+q[0]*q[3]) * from[1] + 2*(q[1]*q[3]-q[0]*q[2]) * from[2]; to[1] = 2*(q[1]*q[2]-q[0]*q[3]) * from[0] + (2*q[0]*q[0]-1+2*q[2]*q[2]) * from[1] + 2*(q[2]*q[3]+q[0]*q[1]) * from[2]; to[2] = 2*(q[1]*q[3]+q[0]*q[2]) * from[0] + 2*(q[2]*q[3]-q[0]*q[1]) * from[1] + (2*q[0]*q[0]-1+2*q[3]*q[3]) * from[2]; */ if(grad) { grad[0][0]= q[0]*f0 + q[3]*f1 - q[2]*f2; grad[0][1]= q[1]*f0 + q[2]*f1 + q[3]*f2; grad[0][2]= -q[2]*f0 + q[1]*f1 - q[0]*f2; grad[0][3]= -q[3]*f0 + q[0]*f1 + q[1]*f2; grad[1][0]= -q[3]*f0 + q[0]*f1 + q[1]*f2; grad[1][1]= q[2]*f0 - q[1]*f1 + q[0]*f2; grad[1][2]= q[1]*f0 + q[2]*f1 + q[3]*2; grad[1][3]= -q[0]*f0 - q[3]*f1 + q[2]*f2; grad[2][0]= q[2]*f0 - q[1]*f1 + q[0]*f2; grad[2][1]= q[3]*f0 - q[0]*f1 - q[1]*f2; grad[2][2]= q[0]*f0 + q[3]*f1 - q[2]*f2; grad[2][3]= q[1]*f0 + q[2]*f1 + q[3]*f2; } } template Quaternion Quaternion::rotateby(const Quaternion &rhs) { //return rhs.inverse() * *this * rhs; //inefficient reference implementation Quaternion r; r[0]=0; rhs.rotate(&r[1],&q[1]); return r; } template Quaternion Quaternion::rotate_match(T *to, const T *from, const T *match) const { Quaternion grad[3]; Quaternion::rotate(to, from, grad); Quaternion derivative; derivative = grad[0] * (to[0]-match[0]); derivative += grad[1] * (to[1]-match[1]); derivative += grad[2] * (to[2]-match[2]); return derivative; } //optionally skip this for microcontrollers if not needed //note that C++ standard headers automatically use float versions of the goniometric functions for T=float template void Quaternion::normquat2eulerzyx(T *e) const { e[0]= atan2(2*q[1]*q[2]-2*q[0]*q[3],2*q[0]*q[0]+2*q[1]*q[1]-1); e[1]= -asin(2*q[1]*q[3]+2*q[0]*q[2]); e[2]= atan2(2*q[2]*q[3]-2*q[0]*q[1],2*q[0]*q[0]+2*q[3]*q[3]-1); } template void Quaternion::normquat2euler(T *eul, const char *type) const { Mat3 rotmat; normquat2rotmat(*this,rotmat,false); rotmat2euler(eul,rotmat,type,false,false,false); } //could be done more efficiently since not all rotmat element s are needed in each case, but this is lazy implementation template void Quaternion::euler2normquat(const T *e, const char *type) { T s1=sin(e[0]*(T)0.5); T s2=sin(e[1]*(T)0.5); T s3=sin(e[2]*(T)0.5); T c1=cos(e[0]*(T)0.5); T c2=cos(e[1]*(T)0.5); T c3=cos(e[2]*(T)0.5); switch(Euler_case(type[0],type[1],type[2])) { case Euler_case('x','z','x'): { q[0] = c2*(c1*c3-s1*s3); q[1] = c2*(s1*c3+c1*s3); q[2] = -s2*(s1*c3-c1*s3); q[3] = s2*(c1*c3+s1*s3); } break; case Euler_case('x','y','x'): { q[0] = c2*(c1*c3-s1*s3); q[1] = c2*(s1*c3+c1*s3); q[2] = s2*(c1*c3+s1*s3); q[3] = s2*(s1*c3-c1*s3); } break; case Euler_case('y','x','y'): { q[0] = c2*(c1*c3-s1*s3); q[1] = s2*(c1*c3+s1*s3); q[2] = c2*(s1*c3+c1*s3); q[3] = -s2*(s1*c3-c1*s3); } break; case Euler_case('y','z','y'): { q[0] = c2*(c1*c3-s1*s3); q[1] = s2*(s1*c3-c1*s3); q[2] = c2*(s1*c3+c1*s3); q[3] = s2*(c1*c3+s1*s3); } break; case Euler_case('z','y','z'): { q[0] = c2*(c1*c3-s1*s3); q[1] = -s2*(s1*c3-c1*s3); q[2] = s2*(c1*c3+s1*s3); q[3] = c2*(s1*c3+c1*s3); } break; case Euler_case('z','x','z'): { q[0] = c2*(c1*c3-s1*s3); q[1] = s2*(c1*c3+s1*s3); q[2] = s2*(s1*c3-c1*s3); q[3] = c2*(s1*c3+c1*s3); } break; case Euler_case('x','z','y'): { q[0] = s1*s2*s3 +c1*c2*c3; q[1] = s1*c2*c3 - c1*s2*s3; q[2] = -s1*s2*c3+c1*c2*s3; q[3] = s1*c2*s3 +c1*s2*c3; } break; case Euler_case('x','y','z'): { q[0] = -s1*s2*s3 + c1*c2*c3; q[1] = s1*c2*c3 +c1*s2*s3; q[2] = -s1*c2*s3 + c1*s2*c3; q[3] = s1*s2*c3 + c1*c2*s3; } break; case Euler_case('y','x','z'): { q[0] = s1*s2*s3 + c1*c2*c3; q[1] = s1*c2*s3 + c1*s2*c3; q[2] = s1*c2*c3 - c1*s2*s3; q[3] = -s1*s2*c3 + c1*c2*s3; } break; case Euler_case('y','z','x'): { q[0] = -s1*s2*s3 + c1*c2*c3; q[1] = s1*s2*c3 + c1*c2*s3; q[2] = s1*c2*c3 + c1*s2*s3; q[3] = -s1*c2*s3 + c1*s2*c3; } break; case Euler_case('z','y','x'): { q[0] = c1*c2*c3 + s1*s2*s3; q[1] = s1*s2*c3 - c1*c2*s3; q[2] = -s1*c2*s3 - c1*s2*c3; q[3] = -s1*c2*c3 + c1*s2*s3; } break; case Euler_case('z','x','y'): { q[0] = -s1*s2*s3 + c1*c2*c3; q[1] = -s1*c2*s3 + c1*s2*c3; q[2] = s1*s2*c3 + c1*c2*s3; q[3] = s1*c2*c3 + c1*s2*s3; } break; }//switch } template void Quaternion::axis2normquat(const T *axis, const T &angle) { T a = (T).5*angle; q[0]=cos(a); T s=sin(a); q[1]=axis[0]*s; q[2]=axis[1]*s; q[3]=axis[2]*s; } template void Quaternion::normquat2axis(T *axis, T &angle) const { T s = sqrt(q[1]*q[1] + q[2]*q[2] +q[3]*q[3]); angle = 2*atan2(s,q[0]); s= 1/s; axis[0]= q[1]*s; axis[1]= q[2]*s; axis[2]= q[3]*s; } template Quaternion LA_Quaternion::exp(const Quaternion &x) { Quaternion r; T vnorm = sqrt(x[1]*x[1]+x[2]*x[2]+x[3]*x[3]); r[0] = cos(vnorm); vnorm = sin(vnorm)/vnorm; r[1] = x[1] * vnorm; r[2] = x[2] * vnorm; r[3] = x[3] * vnorm; r*= ::exp(x[0]); return r; } //NOTE: log(exp(x)) need not be always = x ... log is not unique! //NOTE2: log(x*y) != log(y*x) != log(x)+log(y) template Quaternion LA_Quaternion::log(const Quaternion &x) { Quaternion r; T vnorm = x[1]*x[1]+x[2]*x[2]+x[3]*x[3]; T xnorm = vnorm + x[0]*x[0]; vnorm = sqrt(vnorm); xnorm = sqrt(xnorm); r[0] = ::log(xnorm); T tmp = acos(x[0]/xnorm)/vnorm; r[1] = x[1] * tmp; r[2] = x[2] * tmp; r[3] = x[3] * tmp; return r; } template Quaternion LA_Quaternion::pow(const Quaternion &x, const T &y) { Quaternion r; T vnorm = x[1]*x[1]+x[2]*x[2]+x[3]*x[3]; T xnorm = vnorm + x[0]*x[0]; vnorm = sqrt(vnorm); xnorm = sqrt(xnorm); T phi = acos(x[0]/xnorm); r[0] = cos(y*phi); T tmp = sin(y*phi)/vnorm; r[1] = x[1] * tmp; r[2] = x[2] * tmp; r[3] = x[3] * tmp; r *= ::pow(xnorm,y); return r; } //force instantization #define INSTANTIZE(T) \ template class Quaternion; \ template Quaternion LA_Quaternion::pow(const Quaternion &x, const T &y); \ template Quaternion LA_Quaternion::log(const Quaternion &x); \ template Quaternion LA_Quaternion::exp(const Quaternion &x); \ INSTANTIZE(float) #ifndef QUAT_NO_DOUBLE INSTANTIZE(double) #endif