LA_library/tensor.cc

499 lines
11 KiB
C++

/*
LA: linear algebra C++ interface library
Copyright (C) 2024 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include "tensor.h"
#include "laerror.h"
#include "qsort.h"
#include "miscfunc.h"
#include <complex>
namespace LA {
template<typename T>
int Tensor<T>:: calcrank()
{
int r=0;
for(int i=0; i<shape.size(); ++i)
{
if(shape[i].number==0) laerror("empty index group");
r+=shape[i].number;
}
myrank=r;
return r;
}
template<typename T>
LA_largeindex Tensor<T>::calcsize()
{
groupsizes.resize(shape.size());
cumsizes.resize(shape.size());
LA_largeindex s=1;
for(int i=0; i<shape.size(); ++i)
{
if(shape[i].number==0) laerror("empty index group");
if(shape[i].range==0) return 0;
cumsizes[i]=s;
switch(shape[i].symmetry)
{
case 0:
s *= groupsizes[i] = longpow(shape[i].range,shape[i].number);
break;
case 1:
s *= groupsizes[i] = simplicial(shape[i].number,shape[i].range);
break;
case -1:
s *= groupsizes[i] = simplicial(shape[i].number,shape[i].range-shape[i].number+1);
break;
default:
laerror("illegal index group symmetry");
break;
}
}
return s;
}
LA_largeindex subindex(int *sign, const INDEXGROUP &g, const NRVec<LA_index> &I) //index of one subgroup
{
#ifdef DEBUG
if(I.size()<=0) laerror("empty index group in subindex");
if(g.number!=I.size()) laerror("mismatch in the number of indices in a group");
for(int i=0; i<I.size(); ++i) if(I[i]<g.offset || I[i] >= g.offset+g.range) laerror("index out of range in tensor subindex");
#endif
switch(I.size()) //a few special cases for efficiency
{
case 0:
*sign=0;
return 0;
break;
case 1:
*sign=1;
return I[0]-g.offset;
break;
case 2:
{
*sign=1;
if(g.symmetry==0) return (I[1]-g.offset)*g.range+I[0]-g.offset;
LA_index i0,i1;
if(I[0]>I[1]) {i1=I[0]; i0=I[1]; if(g.symmetry<0) *sign = -1;} else {i1=I[1]; i0=I[0];}
i0 -= g.offset;
i1 -= g.offset;
if(g.symmetry<0)
{
if(i0==i1) {*sign=0; return -1;}
return i1*(i1-1)/2+i0;
}
else
{
return i1*(i1+1)/2+i0;
}
}
break;
default: //general case
{
*sign=1;
if(g.symmetry==0) //rectangular case
{
LA_largeindex r=0;
for(int i=I.size()-1; i>=0; --i)
{
r*= g.range;
r+= I[i]-g.offset;
}
return r;
}
}
//compressed storage case
NRVec<LA_index> II(I);
II.copyonwrite();
if(g.offset!=0) II -= g.offset;
int parity=netsort(II.size(),&II[0]);
if(g.symmetry<0 && (parity&1)) *sign= -1;
if(g.symmetry<0) //antisymmetric
{
for(int i=0; i<I.size()-1; ++i)
if(II[i]==II[i+1])
{*sign=0; return -1;} //identical indices of antisymmetric tensor
LA_largeindex r=0;
for(int i=0; i<II.size(); ++i) r += simplicial(i+1,II[i]-i);
return r;
}
else //symmetric
{
LA_largeindex r=0;
for(int i=0; i<II.size(); ++i) r += simplicial(i+1,II[i]);
return r;
}
break;
}
laerror("this error should not happen");
return -1;
}
//inverse map of group superindex to canonically ordered index list
NRVec<LA_index> inverse_subindex(const INDEXGROUP &g, LA_largeindex s)
{
NRVec<LA_index> I(g.number);
if(g.number==1) {I[0]=s+g.offset; return I;}
switch(g.symmetry)
{
case 0:
for(int i=0; i<g.number; ++i)
{
I[i] = s%g.range;
s /= g.range;
}
break;
case 1:
for(int i=g.number; i>0; --i)
{
I[i-1] = inverse_simplicial(i,s);
s -= simplicial(i,I[i-1]);
}
break;
case -1:
for(int i=g.number-1; i>=0; --i)
{
I[i] = i + inverse_simplicial(i+1,s);
s -= simplicial(i+1,I[i]-i);
}
break;
default: laerror("illegal index symmetry");
}
if(g.offset!=0) I += g.offset;
return I;
}
template<typename T>
SUPERINDEX Tensor<T>::inverse_index(LA_largeindex s) const
{
SUPERINDEX I(shape.size());
for(int g=shape.size()-1; g>=0; --g)
{
LA_largeindex groupindex;
if(g>0)
{
groupindex = s/cumsizes[g];
s %= cumsizes[g];
}
else groupindex=s;
I[g] = inverse_subindex(shape[g],groupindex);
}
return I;
}
template<typename T>
LA_largeindex Tensor<T>::index(int *sign, const SUPERINDEX &I) const
{
//check index structure and ranges
#ifdef DEBUG
if(I.size()!=shape.size()) laerror("mismatch in the number of tensor index groups");
for(int i=0; i<I.size(); ++i)
{
if(shape[i].number!=I[i].size()) {std::cerr<<"error in index group no. "<<i<<std::endl; laerror("mismatch in the size of tensor index group");}
for(int j=0; j<shape[i].number; ++j)
{
if(I[i][j] <shape[i].offset || I[i][j] >= shape[i].offset+shape[i].range)
{
std::cerr<<"error in index group no. "<<i<<" index no. "<<j<<std::endl;
laerror("tensor index out of range");
}
}
}
#endif
LA_largeindex r=0;
*sign=1;
for(int g=0; g<shape.size(); ++g) //loop over index groups
{
int gsign;
LA_largeindex groupindex = subindex(&gsign,shape[g],I[g]);
//std::cout <<"INDEX TEST group "<<g<<" cumsizes "<< cumsizes[g]<<" groupindex "<<groupindex<<std::endl;
*sign *= gsign;
if(groupindex == -1) return -1;
r += groupindex * cumsizes[g];
}
return r;
}
template<typename T>
LA_largeindex Tensor<T>::index(int *sign, const FLATINDEX &I) const
{
#ifdef DEBUG
if(rank()!=I.size()) laerror("tensor rank mismatch in index");
#endif
LA_largeindex r=0;
*sign=1;
int gstart=0;
for(int g=0; g<shape.size(); ++g) //loop over index groups
{
int gsign;
int gend= gstart+shape[g].number-1;
NRVec<LA_index> subI = I.subvector(gstart,gend);
gstart=gend+1;
LA_largeindex groupindex = subindex(&gsign,shape[g],subI);
//std::cout <<"FLATINDEX TEST group "<<g<<" cumsizes "<< cumsizes[g]<<" groupindex "<<groupindex<<std::endl;
*sign *= gsign;
if(groupindex == -1) return -1;
r += groupindex * cumsizes[g];
}
return r;
}
template<typename T>
LA_largeindex Tensor<T>::vindex(int *sign, LA_index i1, va_list args) const
{
NRVec<LA_index> I(rank());
I[0]=i1;
for(int i=1; i<rank(); ++i)
{
I[i] = va_arg(args,LA_index);
}
va_end(args);
return index(sign,I);
}
//binary I/O
template<typename T>
void Tensor<T>::put(int fd) const
{
shape.put(fd,true);
groupsizes.put(fd,true);
cumsizes.put(fd,true);
data.put(fd,true);
}
template<typename T>
void Tensor<T>::get(int fd)
{
shape.get(fd,true);
myrank=calcrank(); //is not stored but recomputed
groupsizes.put(fd,true);
cumsizes.get(fd,true);
data.get(fd,true);
}
template<typename T>
Tensor<T>::Tensor(const NRVec<T> &x)
: data(x)
{
myrank=1;
shape.resize(1);
shape[0].number=1;
shape[0].symmetry=0;
#ifndef LA_TENSOR_ZERO_OFFSET
shape[0].offset=0;
#endif
shape[0].range=x.size();
calcsize();
}
template<typename T>
Tensor<T>::Tensor(const NRMat<T> &x)
: data(&x(0,0),x.nrows()*x.ncols())
{
myrank=2;
if(x.nrows()==x.ncols())
{
shape.resize(1);
shape[0].number=2;
shape[0].symmetry=0;
#ifndef LA_TENSOR_ZERO_OFFSET
shape[0].offset=0;
#endif
shape[0].range=x.nrows();
}
else
{
shape.resize(2);
shape[0].number=1; shape[1].number=1;
shape[0].symmetry=0; shape[1].symmetry=0;
#ifndef LA_TENSOR_ZERO_OFFSET
shape[0].offset=0; shape[1].offset=0;
#endif
shape[0].range=x.ncols();
shape[1].range=x.nrows();
}
calcsize();
}
template<typename T>
Tensor<T>::Tensor(const NRSMat<T> &x)
: data(NRVec<T>(x))
{
myrank=2;
shape.resize(1);
shape[0].number=2;
shape[0].symmetry=1;
#ifndef LA_TENSOR_ZERO_OFFSET
shape[0].offset=0;
#endif
shape[0].range=x.nrows();
calcsize();
}
template<typename T>
void loopingroups(Tensor<T> &t, int ngroup, int igroup, T **p, SUPERINDEX &I, void (*callback)(const SUPERINDEX &, T *))
{
LA_index istart,iend;
switch(t.shape[ngroup].symmetry)
{
case 0:
istart= t.shape[ngroup].offset;
iend= t.shape[ngroup].offset+t.shape[ngroup].range-1;
break;
case 1:
istart= t.shape[ngroup].offset;
if(igroup==t.shape[ngroup].number-1) iend= t.shape[ngroup].offset+t.shape[ngroup].range-1;
else iend = I[ngroup][igroup+1];
break;
case -1:
istart= t.shape[ngroup].offset + igroup;
if(igroup==t.shape[ngroup].number-1) iend= t.shape[ngroup].offset+t.shape[ngroup].range-1;
else iend = I[ngroup][igroup+1]-1;
break;
}
for(LA_index i = istart; i<=iend; ++i)
{
I[ngroup][igroup]=i;
if(ngroup==0 && igroup==0)
{
int sign;
//std::cout <<"TEST "<<t.index(&sign,I)<<" ";
(*callback)(I,(*p)++);
}
else
{
int newigroup= igroup-1;
int newngroup=ngroup;
if(newigroup<0)
{
--newngroup;
newigroup=t.shape[newngroup].number-1;
}
loopingroups(t,newngroup,newigroup,p,I,callback);
}
}
}
template<typename T>
void Tensor<T>::loopover(void (*callback)(const SUPERINDEX &, T *))
{
SUPERINDEX I(shape.size());
for(int i=0; i<I.size(); ++i) {I[i].resize(shape[i].number); I[i] = shape[i].offset;}
T *pp=&data[0];
loopingroups(*this,shape.size()-1,shape[shape.size()-1].number-1,&pp,I,callback);
}
static std::ostream *sout;
template<typename T>
static void outputcallback(const SUPERINDEX &I, T *v)
{
//print indices flat
for(int i=0; i<I.size(); ++i)
for(int j=0; j<I[i].size(); ++j) *sout << I[i][j]<<" ";
*sout<<" "<< *v<<std::endl;
}
std::ostream & operator<<(std::ostream &s, const INDEXGROUP &x)
{
s<<x.number <<" "<<x.symmetry<<" ";
#ifndef LA_TENSOR_ZERO_OFFSET
s<<x.offset<<" ";
#endif
s<< x.range<<std::endl;
return s;
}
std::istream & operator>>(std::istream &s, INDEXGROUP &x)
{
s>>x.number>>x.symmetry;
#ifndef LA_TENSOR_ZERO_OFFSET
s>>x.offset;
#endif
s>>x.range;
return s;
}
template<typename T>
std::ostream & operator<<(std::ostream &s, const Tensor<T> &x)
{
s<<x.shape;
sout= &s;
const_cast<Tensor<T> *>(&x)->loopover(&outputcallback<T>);
return s;
}
template <typename T>
std::istream & operator>>(std::istream &s, Tensor<T> &x)
{
s>>x.shape;
x.data.resize(x.calcsize()); x.calcrank();
FLATINDEX I(x.rank());
for(LA_largeindex i=0; i<x.data.size(); ++i)
{
for(int j=0; j<I.size(); ++j) s>>I[j];
T val; s>>val;
x.lhs(I) = val;
}
return s;
}
template class Tensor<double>;
template class Tensor<std::complex<double> >;
template std::ostream & operator<<(std::ostream &s, const Tensor<double> &x);
template std::ostream & operator<<(std::ostream &s, const Tensor<std::complex<double> > &x);
template std::istream & operator>>(std::istream &s, Tensor<double> &x);
template std::istream & operator>>(std::istream &s, Tensor<std::complex<double> > &x);
}//namespace