764 lines
19 KiB
C++
764 lines
19 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2024 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include "tensor.h"
|
|
#include "laerror.h"
|
|
#include "qsort.h"
|
|
#include "miscfunc.h"
|
|
#include <complex>
|
|
|
|
|
|
namespace LA {
|
|
|
|
template<typename T>
|
|
int Tensor<T>:: calcrank()
|
|
{
|
|
int r=0;
|
|
for(int i=0; i<shape.size(); ++i)
|
|
{
|
|
const indexgroup *sh = &(* const_cast<const NRVec<indexgroup> *>(&shape))[i];
|
|
if(sh->number==0) laerror("empty index group");
|
|
r+=sh->number;
|
|
}
|
|
myrank=r;
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
LA_largeindex Tensor<T>::calcsize()
|
|
{
|
|
groupsizes.resize(shape.size());
|
|
cumsizes.resize(shape.size());
|
|
LA_largeindex s=1;
|
|
for(int i=0; i<shape.size(); ++i)
|
|
{
|
|
const indexgroup *sh = &(* const_cast<const NRVec<indexgroup> *>(&shape))[i];
|
|
if(sh->number==0) laerror("empty index group");
|
|
if(sh->range==0) return 0;
|
|
cumsizes[i]=s;
|
|
switch(sh->symmetry)
|
|
{
|
|
case 0:
|
|
s *= groupsizes[i] = longpow(sh->range,sh->number);
|
|
break;
|
|
case 1:
|
|
s *= groupsizes[i] = simplicial(sh->number,sh->range);
|
|
break;
|
|
case -1:
|
|
s *= groupsizes[i] = simplicial(sh->number,sh->range-sh->number+1);
|
|
break;
|
|
default:
|
|
laerror("illegal index group symmetry");
|
|
break;
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
|
|
LA_largeindex subindex(int *sign, const INDEXGROUP &g, const NRVec<LA_index> &I) //index of one subgroup
|
|
{
|
|
#ifdef DEBUG
|
|
if(I.size()<=0) laerror("empty index group in subindex");
|
|
if(g.number!=I.size()) laerror("mismatch in the number of indices in a group");
|
|
for(int i=0; i<I.size(); ++i) if(I[i]<g.offset || I[i] >= g.offset+g.range) laerror("index out of range in tensor subindex");
|
|
#endif
|
|
|
|
switch(I.size()) //a few special cases for efficiency
|
|
{
|
|
case 0:
|
|
*sign=0;
|
|
return 0;
|
|
break;
|
|
case 1:
|
|
*sign=1;
|
|
return I[0]-g.offset;
|
|
break;
|
|
case 2:
|
|
{
|
|
*sign=1;
|
|
if(g.symmetry==0) return (I[1]-g.offset)*g.range+I[0]-g.offset;
|
|
LA_index i0,i1;
|
|
if(I[0]>I[1]) {i1=I[0]; i0=I[1]; if(g.symmetry<0) *sign = -1;} else {i1=I[1]; i0=I[0];}
|
|
i0 -= g.offset;
|
|
i1 -= g.offset;
|
|
if(g.symmetry<0)
|
|
{
|
|
if(i0==i1) {*sign=0; return -1;}
|
|
return i1*(i1-1)/2+i0;
|
|
}
|
|
else
|
|
{
|
|
return i1*(i1+1)/2+i0;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default: //general case
|
|
{
|
|
*sign=1;
|
|
|
|
if(g.symmetry==0) //rectangular case
|
|
{
|
|
LA_largeindex r=0;
|
|
for(int i=I.size()-1; i>=0; --i)
|
|
{
|
|
r*= g.range;
|
|
r+= I[i]-g.offset;
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
//compressed storage case
|
|
NRVec<LA_index> II(I);
|
|
II.copyonwrite();
|
|
if(g.offset!=0) II -= g.offset;
|
|
int parity=netsort(II.size(),&II[0]);
|
|
if(g.symmetry<0 && (parity&1)) *sign= -1;
|
|
if(g.symmetry<0) //antisymmetric
|
|
{
|
|
for(int i=0; i<I.size()-1; ++i)
|
|
if(II[i]==II[i+1])
|
|
{*sign=0; return -1;} //identical indices of antisymmetric tensor
|
|
|
|
LA_largeindex r=0;
|
|
for(int i=0; i<II.size(); ++i) r += simplicial(i+1,II[i]-i);
|
|
return r;
|
|
}
|
|
else //symmetric
|
|
{
|
|
LA_largeindex r=0;
|
|
for(int i=0; i<II.size(); ++i) r += simplicial(i+1,II[i]);
|
|
return r;
|
|
}
|
|
break;
|
|
}
|
|
laerror("this error should not happen");
|
|
return -1;
|
|
}
|
|
|
|
|
|
//inverse map of group superindex to canonically ordered index list
|
|
NRVec<LA_index> inverse_subindex(const INDEXGROUP &g, LA_largeindex s)
|
|
{
|
|
NRVec<LA_index> I(g.number);
|
|
if(g.number==1) {I[0]=s+g.offset; return I;}
|
|
switch(g.symmetry)
|
|
{
|
|
case 0:
|
|
for(int i=0; i<g.number; ++i)
|
|
{
|
|
I[i] = s%g.range;
|
|
s /= g.range;
|
|
}
|
|
break;
|
|
case 1:
|
|
for(int i=g.number; i>0; --i)
|
|
{
|
|
I[i-1] = inverse_simplicial(i,s);
|
|
s -= simplicial(i,I[i-1]);
|
|
}
|
|
break;
|
|
case -1:
|
|
for(int i=g.number-1; i>=0; --i)
|
|
{
|
|
I[i] = i + inverse_simplicial(i+1,s);
|
|
s -= simplicial(i+1,I[i]-i);
|
|
}
|
|
break;
|
|
default: laerror("illegal index symmetry");
|
|
}
|
|
|
|
if(g.offset!=0) I += g.offset;
|
|
return I;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
SUPERINDEX Tensor<T>::inverse_index(LA_largeindex s) const
|
|
{
|
|
SUPERINDEX I(shape.size());
|
|
for(int g=shape.size()-1; g>=0; --g)
|
|
{
|
|
LA_largeindex groupindex;
|
|
if(g>0)
|
|
{
|
|
groupindex = s/cumsizes[g];
|
|
s %= cumsizes[g];
|
|
}
|
|
else groupindex=s;
|
|
I[g] = inverse_subindex(shape[g],groupindex);
|
|
}
|
|
return I;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
LA_largeindex Tensor<T>::index(int *sign, const SUPERINDEX &I) const
|
|
{
|
|
//check index structure and ranges
|
|
#ifdef DEBUG
|
|
if(I.size()!=shape.size()) laerror("mismatch in the number of tensor index groups");
|
|
for(int i=0; i<I.size(); ++i)
|
|
{
|
|
if(shape[i].number!=I[i].size()) {std::cerr<<"error in index group no. "<<i<<std::endl; laerror("mismatch in the size of tensor index group");}
|
|
for(int j=0; j<shape[i].number; ++j)
|
|
{
|
|
if(I[i][j] <shape[i].offset || I[i][j] >= shape[i].offset+shape[i].range)
|
|
{
|
|
std::cerr<<"error in index group no. "<<i<<" index no. "<<j<<std::endl;
|
|
laerror("tensor index out of range");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
LA_largeindex r=0;
|
|
*sign=1;
|
|
for(int g=0; g<shape.size(); ++g) //loop over index groups
|
|
{
|
|
int gsign;
|
|
LA_largeindex groupindex = subindex(&gsign,shape[g],I[g]);
|
|
//std::cout <<"INDEX TEST group "<<g<<" cumsizes "<< cumsizes[g]<<" groupindex "<<groupindex<<std::endl;
|
|
*sign *= gsign;
|
|
if(groupindex == -1) return -1;
|
|
r += groupindex * cumsizes[g];
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
LA_largeindex Tensor<T>::index(int *sign, const FLATINDEX &I) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(rank()!=I.size()) laerror("tensor rank mismatch in index");
|
|
#endif
|
|
|
|
LA_largeindex r=0;
|
|
*sign=1;
|
|
int gstart=0;
|
|
for(int g=0; g<shape.size(); ++g) //loop over index groups
|
|
{
|
|
int gsign;
|
|
int gend= gstart+shape[g].number-1;
|
|
NRVec<LA_index> subI = I.subvector(gstart,gend);
|
|
gstart=gend+1;
|
|
LA_largeindex groupindex = subindex(&gsign,shape[g],subI);
|
|
//std::cout <<"FLATINDEX TEST group "<<g<<" cumsizes "<< cumsizes[g]<<" groupindex "<<groupindex<<std::endl;
|
|
*sign *= gsign;
|
|
if(groupindex == -1) return -1;
|
|
r += groupindex * cumsizes[g];
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
LA_largeindex Tensor<T>::vindex(int *sign, LA_index i1, va_list args) const
|
|
{
|
|
NRVec<LA_index> I(rank());
|
|
I[0]=i1;
|
|
for(int i=1; i<rank(); ++i)
|
|
{
|
|
I[i] = va_arg(args,LA_index);
|
|
}
|
|
va_end(args);
|
|
|
|
return index(sign,I);
|
|
}
|
|
|
|
|
|
//binary I/O
|
|
|
|
template<typename T>
|
|
void Tensor<T>::put(int fd) const
|
|
{
|
|
shape.put(fd,true);
|
|
groupsizes.put(fd,true);
|
|
cumsizes.put(fd,true);
|
|
data.put(fd,true);
|
|
}
|
|
|
|
template<typename T>
|
|
void Tensor<T>::get(int fd)
|
|
{
|
|
shape.get(fd,true);
|
|
myrank=calcrank(); //is not stored but recomputed
|
|
groupsizes.put(fd,true);
|
|
cumsizes.get(fd,true);
|
|
data.get(fd,true);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Tensor<T>::Tensor(const NRVec<T> &x)
|
|
: data(x)
|
|
{
|
|
myrank=1;
|
|
shape.resize(1);
|
|
shape[0].number=1;
|
|
shape[0].symmetry=0;
|
|
#ifndef LA_TENSOR_ZERO_OFFSET
|
|
shape[0].offset=0;
|
|
#endif
|
|
shape[0].range=x.size();
|
|
calcsize();
|
|
}
|
|
|
|
template<typename T>
|
|
Tensor<T>::Tensor(const NRMat<T> &x)
|
|
: data(&x(0,0),x.nrows()*x.ncols())
|
|
{
|
|
myrank=2;
|
|
if(x.nrows()==x.ncols())
|
|
{
|
|
shape.resize(1);
|
|
shape[0].number=2;
|
|
shape[0].symmetry=0;
|
|
#ifndef LA_TENSOR_ZERO_OFFSET
|
|
shape[0].offset=0;
|
|
#endif
|
|
shape[0].range=x.nrows();
|
|
}
|
|
else
|
|
{
|
|
shape.resize(2);
|
|
shape[0].number=1; shape[1].number=1;
|
|
shape[0].symmetry=0; shape[1].symmetry=0;
|
|
#ifndef LA_TENSOR_ZERO_OFFSET
|
|
shape[0].offset=0; shape[1].offset=0;
|
|
#endif
|
|
shape[0].range=x.ncols();
|
|
shape[1].range=x.nrows();
|
|
}
|
|
calcsize();
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Tensor<T>::Tensor(const NRSMat<T> &x)
|
|
: data(NRVec<T>(x))
|
|
{
|
|
myrank=2;
|
|
shape.resize(1);
|
|
shape[0].number=2;
|
|
shape[0].symmetry=1;
|
|
#ifndef LA_TENSOR_ZERO_OFFSET
|
|
shape[0].offset=0;
|
|
#endif
|
|
shape[0].range=x.nrows();
|
|
calcsize();
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void loopingroups(Tensor<T> &t, int ngroup, int igroup, T **p, SUPERINDEX &I, void (*callback)(const SUPERINDEX &, T *))
|
|
{
|
|
LA_index istart,iend;
|
|
const indexgroup *sh = &(* const_cast<const NRVec<indexgroup> *>(&t.shape))[ngroup];
|
|
switch(sh->symmetry)
|
|
{
|
|
case 0:
|
|
istart= sh->offset;
|
|
iend= sh->offset+sh->range-1;
|
|
break;
|
|
case 1:
|
|
istart= sh->offset;
|
|
if(igroup==sh->number-1) iend= sh->offset+sh->range-1;
|
|
else iend = I[ngroup][igroup+1];
|
|
break;
|
|
case -1:
|
|
istart= sh->offset + igroup;
|
|
if(igroup==sh->number-1) iend= sh->offset+sh->range-1;
|
|
else iend = I[ngroup][igroup+1]-1;
|
|
break;
|
|
}
|
|
|
|
for(LA_index i = istart; i<=iend; ++i)
|
|
{
|
|
I[ngroup][igroup]=i;
|
|
if(ngroup==0 && igroup==0)
|
|
{
|
|
int sign;
|
|
//std::cout <<"TEST "<<t.index(&sign,I)<<" ";
|
|
(*callback)(I,(*p)++);
|
|
}
|
|
else
|
|
{
|
|
int newigroup= igroup-1;
|
|
int newngroup=ngroup;
|
|
if(newigroup<0)
|
|
{
|
|
--newngroup;
|
|
const indexgroup *sh2 = &(* const_cast<const NRVec<indexgroup> *>(&t.shape))[newngroup];
|
|
newigroup=sh2->number-1;
|
|
}
|
|
loopingroups(t,newngroup,newigroup,p,I,callback);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void Tensor<T>::loopover(void (*callback)(const SUPERINDEX &, T *))
|
|
{
|
|
SUPERINDEX I(shape.size());
|
|
for(int i=0; i<I.size(); ++i)
|
|
{
|
|
const indexgroup *sh = &(* const_cast<const NRVec<indexgroup> *>(&shape))[i];
|
|
I[i].resize(sh->number);
|
|
I[i] = sh->offset;
|
|
}
|
|
T *pp=&data[0];
|
|
int ss=shape.size()-1;
|
|
const indexgroup *sh = &(* const_cast<const NRVec<indexgroup> *>(&shape))[ss];
|
|
loopingroups(*this,ss,sh->number-1,&pp,I,callback);
|
|
}
|
|
|
|
|
|
static std::ostream *sout;
|
|
template<typename T>
|
|
static void outputcallback(const SUPERINDEX &I, T *v)
|
|
{
|
|
//print indices flat
|
|
for(int i=0; i<I.size(); ++i)
|
|
for(int j=0; j<I[i].size(); ++j) *sout << I[i][j]<<" ";
|
|
*sout<<" "<< *v<<std::endl;
|
|
}
|
|
|
|
|
|
std::ostream & operator<<(std::ostream &s, const INDEXGROUP &x)
|
|
{
|
|
s<<x.number <<" "<<x.symmetry<<" ";
|
|
#ifndef LA_TENSOR_ZERO_OFFSET
|
|
s<<x.offset<<" ";
|
|
#endif
|
|
s<< x.range<<std::endl;
|
|
return s;
|
|
}
|
|
|
|
std::istream & operator>>(std::istream &s, INDEXGROUP &x)
|
|
{
|
|
s>>x.number>>x.symmetry;
|
|
#ifndef LA_TENSOR_ZERO_OFFSET
|
|
s>>x.offset;
|
|
#endif
|
|
s>>x.range;
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
std::ostream & operator<<(std::ostream &s, const Tensor<T> &x)
|
|
{
|
|
s<<x.shape;
|
|
sout= &s;
|
|
const_cast<Tensor<T> *>(&x)->loopover(&outputcallback<T>);
|
|
return s;
|
|
}
|
|
|
|
template <typename T>
|
|
std::istream & operator>>(std::istream &s, Tensor<T> &x)
|
|
{
|
|
s>>x.shape;
|
|
x.data.resize(x.calcsize()); x.calcrank();
|
|
FLATINDEX I(x.rank());
|
|
for(LA_largeindex i=0; i<x.data.size(); ++i)
|
|
{
|
|
for(int j=0; j<I.size(); ++j) s>>I[j];
|
|
T val; s>>val;
|
|
x.lhs(I) = val;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
void loopovergroups(Tensor<T> &t, int ngroup, T **p, GROUPINDEX &I, void (*callback)(const GROUPINDEX &, T *))
|
|
{
|
|
for(LA_largeindex i = 0; i<t.groupsizes[ngroup]; ++i)
|
|
{
|
|
I[ngroup]=i;
|
|
if(ngroup==0) (*callback)(I,(*p)++);
|
|
else loopovergroups(t,ngroup-1,p,I,callback);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void Tensor<T>::grouploopover(void (*callback)(const GROUPINDEX &, T *))
|
|
{
|
|
GROUPINDEX I(shape.size());
|
|
T *pp=&data[0];
|
|
loopovergroups(*this,shape.size()-1,&pp,I,callback);
|
|
}
|
|
|
|
|
|
const NRPerm<int> *help_p;
|
|
template<typename T>
|
|
Tensor<T> *help_t;
|
|
template<typename T>
|
|
const Tensor<T> *help_tt;
|
|
|
|
template<typename T>
|
|
static void permutecallback(const GROUPINDEX &I, T *v)
|
|
{
|
|
LA_largeindex target=0;
|
|
for(int i=0; i< help_t<T>->shape.size(); ++i)
|
|
{
|
|
target += I[(*help_p)[i+1]-1] * help_t<T>->cumsizes[i];
|
|
}
|
|
help_t<T>->data[target] = *v;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
Tensor<T> Tensor<T>::permute_index_groups(const NRPerm<int> &p) const
|
|
{
|
|
NRVec<indexgroup> newshape=shape.permuted(p);
|
|
Tensor<T> r(newshape);
|
|
|
|
//prepare statics for the callback
|
|
help_p = &p;
|
|
help_t<T> = &r;
|
|
|
|
//now rearrange the data
|
|
const_cast<Tensor<T> *>(this)->grouploopover(permutecallback<T>);
|
|
return r;
|
|
}
|
|
|
|
|
|
FLATINDEX superindex2flat(const SUPERINDEX &I)
|
|
{
|
|
int rank=0;
|
|
for(int i=0; i<I.size(); ++i) rank += I[i].size();
|
|
FLATINDEX J(rank);
|
|
int ii=0;
|
|
for(int i=0; i<I.size(); ++i)
|
|
{
|
|
for(int j=0; j<I[i].size(); ++j) J[ii++] = I[i][j];
|
|
}
|
|
return J;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
static void unwind_callback(const SUPERINDEX &I, T *v)
|
|
{
|
|
FLATINDEX J = superindex2flat(I);
|
|
FLATINDEX JP = J.permuted(*help_p,true);
|
|
//std::cout <<"TEST unwind_callback: from "<<JP<<" TO "<<J<<std::endl;
|
|
*v = (*help_tt<T>)(JP); //rhs operator() generates the redundant elements for the unwinded lhs tensor
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
Tensor<T> Tensor<T>::unwind_index(int group, int index) const
|
|
{
|
|
if(group<0||group>=shape.size()) laerror("wrong group number in unwind_index");
|
|
if(index<0||index>=shape[group].number) laerror("wrong index number in unwind_index");
|
|
if(shape[group].number==1) //single index in the group
|
|
{
|
|
if(group==0) return *this; //is already the least significant group
|
|
NRPerm<int> p(shape.size());
|
|
p[1]= 1+group;
|
|
int ii=1;
|
|
if(ii==1+group) ii++; //skip this
|
|
for(int i=2; i<=shape.size(); ++i)
|
|
{
|
|
p[i]=ii++;
|
|
if(ii==1+group) ii++; //skip this
|
|
}
|
|
if(!p.is_valid()) laerror("internal error in unwind_index");
|
|
return permute_index_groups(p);
|
|
}
|
|
|
|
//general case - recalculate the shape and allocate the new tensor
|
|
NRVec<indexgroup> newshape(shape.size()+1);
|
|
newshape[0].number=1;
|
|
newshape[0].symmetry=0;
|
|
newshape[0].range=shape[group].range;
|
|
#ifndef LA_TENSOR_ZERO_OFFSET
|
|
newshape[0].offset = shape[group].offset;
|
|
#endif
|
|
int flatindex=0; //(group,index) in flat form
|
|
for(int i=0; i<shape.size(); ++i)
|
|
{
|
|
newshape[i+1] = shape[i];
|
|
if(i==group)
|
|
{
|
|
--newshape[i+1].number;
|
|
flatindex += index;
|
|
}
|
|
else flatindex += shape[i].number;
|
|
}
|
|
|
|
Tensor<T> r(newshape);
|
|
if(r.rank()!=rank()) laerror("internal error 2 in unwind_index");
|
|
|
|
//compute the corresponding permutation of FLATINDEX for use in the callback
|
|
NRPerm<int> indexperm(rank());
|
|
indexperm[1]=flatindex+1;
|
|
int ii=1;
|
|
if(ii==flatindex+1) ii++;
|
|
for(int i=2; i<=rank(); ++i)
|
|
{
|
|
indexperm[i] = ii++;
|
|
if(ii==flatindex+1) ii++; //skip this
|
|
}
|
|
if(!indexperm.is_valid())
|
|
{
|
|
std::cout << "indexperm = "<<indexperm<<std::endl;
|
|
laerror("internal error 3 in unwind_index");
|
|
}
|
|
|
|
//loop recursively and do the unwinding
|
|
help_tt<T> = this;
|
|
help_p = &indexperm;
|
|
r.loopover(unwind_callback);
|
|
return r;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
static void auxmatmult(int nn, int mm, int kk, T *r, T *a, T *b, T alpha=1, T beta=0, bool conjugate=false) //R(nn,mm) = A * B^T
|
|
{
|
|
for(int i=0; i<nn; ++i) for(int j=0; j<mm; ++j)
|
|
{
|
|
if(beta==0) r[i*mm+j]=0; else r[i*mm+j] *= beta;
|
|
for(int k=0; k<kk; ++k) r[i*mm+j] += alpha * a[i*kk+k] * conjugate? LA_traits<T>::conjugate(b[j*kk+k]) : b[j*kk+k];
|
|
}
|
|
}
|
|
|
|
|
|
template<>
|
|
void auxmatmult<double>(int nn, int mm, int kk, double *r, double *a, double *b, double alpha, double beta, bool conjugate)
|
|
{
|
|
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasTrans, nn, mm, kk, alpha, a, kk, b, kk, beta, r, mm);
|
|
}
|
|
|
|
template<>
|
|
void auxmatmult<std::complex<double> >(int nn, int mm, int kk, std::complex<double> *r, std::complex<double> *a, std::complex<double> *b, std::complex<double> alpha, std::complex<double> beta, bool conjugate)
|
|
{
|
|
cblas_zgemm(CblasRowMajor, CblasNoTrans, (conjugate?CblasConjTrans:CblasTrans), nn, mm, kk, &alpha, a, kk, b, kk, &beta, r, mm);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//Conntraction could be implemented without the temporary storage for unwinding, but then we would need
|
|
//double recursion over indices of both tensors. Hopefully using the matrix multiplication here
|
|
//makes it also more efficient, even for (anti)symmetric indices
|
|
//The index unwinding is unfortunately a big burden, and in principle could be eliminated in case of non-symmetric indices
|
|
//
|
|
template<typename T>
|
|
void Tensor<T>::addcontraction(const Tensor &rhs1, int group, int index, const Tensor &rhs, int rhsgroup, int rhsindex, T alpha, T beta, bool doresize, bool conjugate)
|
|
{
|
|
if(group<0||group>=rhs1.shape.size()) laerror("wrong group number in contraction");
|
|
if(rhsgroup<0||rhsgroup>=rhs.shape.size()) laerror("wrong rhsgroup number in contraction");
|
|
if(index<0||index>=rhs1.shape[group].number) laerror("wrong index number in conntraction");
|
|
if(rhsindex<0||rhsindex>=rhs.shape[rhsgroup].number) laerror("wrong index number in conntraction");
|
|
if(rhs1.shape[group].offset != rhs.shape[rhsgroup].offset) laerror("incompatible index offset in contraction");
|
|
if(rhs1.shape[group].range != rhs.shape[rhsgroup].range) laerror("incompatible index range in contraction");
|
|
|
|
Tensor<T> u = rhs1.unwind_index(group,index);
|
|
Tensor<T> rhsu = rhs.unwind_index(rhsgroup,rhsindex);
|
|
|
|
|
|
NRVec<indexgroup> newshape(u.shape.size()+rhsu.shape.size()-2);
|
|
int ii=0;
|
|
for(int i=1; i<rhsu.shape.size(); ++i) newshape[ii++] = rhsu.shape[i];
|
|
for(int i=1; i<u.shape.size(); ++i) newshape[ii++] = u.shape[i]; //this tensor will have more significant indices than the rhs one
|
|
|
|
if(doresize)
|
|
{
|
|
if(beta!= (T)0) laerror("resize in addcontraction requires beta=0");
|
|
resize(newshape);
|
|
}
|
|
else
|
|
{
|
|
if(shape!=newshape) laerror("tensor shape mismatch in addcontraction");
|
|
}
|
|
int nn,mm,kk;
|
|
kk=u.groupsizes[0];
|
|
if(kk!=rhsu.groupsizes[0]) laerror("internal error in contraction");
|
|
nn=1; for(int i=1; i<u.shape.size(); ++i) nn*= u.groupsizes[i];
|
|
mm=1; for(int i=1; i<rhsu.shape.size(); ++i) mm*= rhsu.groupsizes[i];
|
|
data.copyonwrite();
|
|
auxmatmult<T>(nn,mm,kk,&data[0],&u.data[0], &rhsu.data[0],alpha,beta,conjugate);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
static const PermutationAlgebra<int,T> *help_pa;
|
|
|
|
static bool help_inverse;
|
|
|
|
template<typename T>
|
|
static T help_alpha;
|
|
|
|
template<typename T>
|
|
static void permutationalgebra_callback(const SUPERINDEX &I, T *v)
|
|
{
|
|
FLATINDEX J = superindex2flat(I);
|
|
for(int p=0; p<help_pa<T>->size(); ++p)
|
|
{
|
|
FLATINDEX Jp = J.permuted((*help_pa<T>)[p].perm,help_inverse);
|
|
*v += help_alpha<T> * (*help_pa<T>)[p].weight * (*help_t<T>)(Jp);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
void Tensor<T>::apply_permutation_algebra(const Tensor<T> &rhs, const PermutationAlgebra<int,T> &pa, bool inverse, T alpha, T beta)
|
|
{
|
|
if(beta!=(T)0) {if(beta!=(T)1) *this *= beta;} else clear();
|
|
if(alpha==(T)0) return;
|
|
copyonwrite();
|
|
|
|
help_t<T> = const_cast<Tensor<T> *>(&rhs);
|
|
help_pa<T> = &pa;
|
|
help_inverse = inverse;
|
|
help_alpha<T> = alpha;
|
|
loopover(permutationalgebra_callback);
|
|
}
|
|
|
|
|
|
template class Tensor<double>;
|
|
template class Tensor<std::complex<double> >;
|
|
template std::ostream & operator<<(std::ostream &s, const Tensor<double> &x);
|
|
template std::ostream & operator<<(std::ostream &s, const Tensor<std::complex<double> > &x);
|
|
template std::istream & operator>>(std::istream &s, Tensor<double> &x);
|
|
template std::istream & operator>>(std::istream &s, Tensor<std::complex<double> > &x);
|
|
|
|
|
|
}//namespace
|