396 lines
14 KiB
C++
396 lines
14 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2008 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef _LA_NONCLASS_H_
|
|
#define _LA_NONCLASS_H_
|
|
#include "vec.h"
|
|
#include "smat.h"
|
|
#include "mat.h"
|
|
#include "la_traits.h"
|
|
|
|
namespace LA {
|
|
|
|
//MISC
|
|
template <class T>
|
|
const NRSMat<T> twoside_transform(const NRSMat<T> &S, const NRMat<T> &C, bool transp=0) //calculate C^dagger S C
|
|
{
|
|
if(transp)
|
|
{
|
|
NRMat<T> tmp = C * S;
|
|
NRMat<T> result(C.nrows(),C.nrows());
|
|
result.gemm((T)0,tmp,'n',C,'t',(T)1);
|
|
return NRSMat<T>(result);
|
|
}
|
|
NRMat<T> tmp = S * C;
|
|
NRMat<T> result(C.ncols(),C.ncols());
|
|
result.gemm((T)0,C,'t',tmp,'n',(T)1);
|
|
return NRSMat<T>(result);
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
const NRMat<T> diagonalmatrix(const NRVec<T> &x)
|
|
{
|
|
int n=x.size();
|
|
NRMat<T> result((T)0,n,n);
|
|
T *p = result[0];
|
|
for(int j=0; j<n; j++) {*p = x[j]; p+=(n+1);}
|
|
return result;
|
|
}
|
|
|
|
|
|
//more efficient commutator for a special case of full matrices
|
|
template<class T>
|
|
inline const NRMat<T> commutator ( const NRMat<T> &x, const NRMat<T> &y, const bool trx=0, const bool tryy=0)
|
|
{
|
|
NRMat<T> r(trx?x.ncols():x.nrows(), tryy?y.nrows():y.ncols());
|
|
r.gemm((T)0,x,trx?'t':'n',y,tryy?'t':'n',(T)1);
|
|
r.gemm((T)1,y,tryy?'t':'n',x,trx?'t':'n',(T)-1);
|
|
return r;
|
|
}
|
|
|
|
//more efficient commutator for a special case of full matrices
|
|
template<class T>
|
|
inline const NRMat<T> anticommutator ( const NRMat<T> &x, const NRMat<T> &y, const bool trx=0, const bool tryy=0)
|
|
{
|
|
NRMat<T> r(trx?x.ncols():x.nrows(), tryy?y.nrows():y.ncols());
|
|
r.gemm((T)0,x,trx?'t':'n',y,tryy?'t':'n',(T)1);
|
|
r.gemm((T)1,y,tryy?'t':'n',x,trx?'t':'n',(T)1);
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
|
|
//////////////////////
|
|
// LAPACK interface //
|
|
//////////////////////
|
|
|
|
#define declare_la(T) \
|
|
extern const NRVec<T> diagofproduct(const NRMat<T> &a, const NRMat<T> &b,\
|
|
bool trb=0, bool conjb=0); \
|
|
extern T trace2(const NRMat<T> &a, const NRMat<T> &b, bool trb=0); \
|
|
extern T trace2(const NRSMat<T> &a, const NRSMat<T> &b, const bool diagscaled=0);\
|
|
extern T trace2(const NRSMat<T> &a, const NRMat<T> &b, const bool diagscaled=0);\
|
|
extern T trace2(const NRMat<T> &a, const NRSMat<T> &b, const bool diagscaled=0);\
|
|
extern void linear_solve(NRMat<T> &a, NRMat<T> *b, T *det=0,int n=0); /*solve Ax^T=b^T (b is nrhs x n) */ \
|
|
extern void linear_solve(NRSMat<T> &a, NRMat<T> *b, T *det=0, int n=0); /*solve Ax^T=b^T (b is nrhs x n) */\
|
|
extern void linear_solve(NRMat<T> &a, NRVec<T> &b, double *det=0, int n=0); \
|
|
extern void linear_solve(NRSMat<T> &a, NRVec<T> &b, double *det=0, int n=0); \
|
|
extern void diagonalize(NRMat<T> &a, NRVec<LA_traits<T>::normtype> &w, const bool eivec=1, const bool corder=1, int n=0, NRMat<T> *b=NULL, const int itype=1); \
|
|
extern void diagonalize(NRSMat<T> &a, NRVec<LA_traits<T>::normtype> &w, NRMat<T> *v, const bool corder=1, int n=0, NRSMat<T> *b=NULL, const int itype=1);\
|
|
extern void singular_decomposition(NRMat<T> &a, NRMat<T> *u, NRVec<LA_traits<T>::normtype> &s, NRMat<T> *v, const bool vnotdagger=0, int m=0, int n=0);
|
|
|
|
/*NOTE!!! all versions of diagonalize DESTROY A and generalized diagonalize also B matrix */
|
|
|
|
declare_la(double)
|
|
declare_la(std::complex<double>)
|
|
|
|
// Separate declarations
|
|
//general nonsymmetric matrix and generalized diagonalization
|
|
//corder =0 ... C rows are eigenvectors, =1 ... C columns are eigenvectors
|
|
extern void gdiagonalize(NRMat<double> &a, NRVec<double> &wr, NRVec<double> &wi,
|
|
NRMat<double> *vl, NRMat<double> *vr, const bool corder=1, int n=0, const int sorttype=0, const int biorthonormalize=0,
|
|
NRMat<double> *b=NULL, NRVec<double> *beta=NULL); //this used real storage of eigenvectors like dgeev
|
|
|
|
template<typename T>
|
|
extern void gdiagonalize(NRMat<T> &a, NRVec< std::complex<double> > &w,
|
|
NRMat< std::complex<double> >*vl, NRMat< std::complex<double> > *vr,
|
|
const bool corder=1, int n=0, const int sorttype=0, const int biorthonormalize=0,
|
|
NRMat<T> *b=NULL, NRVec<T> *beta=NULL); //eigenvectors are stored in complex matrices for T both double and complex
|
|
|
|
//for compatibility in davidson
|
|
extern void gdiagonalize(NRMat<std::complex<double> > &a, NRVec<double> &wr, NRVec<double> &wi,
|
|
NRMat<std::complex<double> > *vl, NRMat<std::complex<double> > *vr, const bool corder=1, int n=0, const int sorttype=0, const int biorthonormalize=0,
|
|
NRMat<std::complex<double> > *b=NULL, NRVec<std::complex<double> > *beta=NULL);
|
|
|
|
//complex,real,imaginary parts of various entities
|
|
template<typename T>
|
|
extern const typename LA_traits<T>::realtype realpart(const T&);
|
|
template<typename T>
|
|
extern const typename LA_traits<T>::realtype imagpart(const T&);
|
|
template<typename T>
|
|
extern const typename LA_traits<T>::complextype realmatrix (const T&);
|
|
template<typename T>
|
|
extern const typename LA_traits<T>::complextype imagmatrix (const T&);
|
|
template<typename T>
|
|
extern const typename LA_traits<T>::complextype complexmatrix (const T&, const T&);
|
|
|
|
//Cholesky decomposition
|
|
extern void cholesky(NRMat<double> &a, bool upper=1);
|
|
extern void cholesky(NRMat<std::complex<double> > &a, bool upper=1);
|
|
|
|
//inverse by means of linear solve, preserving rhs intact
|
|
template<typename T>
|
|
const NRMat<T> inverse(NRMat<T> a, T *det=0)
|
|
{
|
|
#ifdef DEBUG
|
|
if(a.nrows()!=a.ncols()) laerror("inverse() for non-square matrix");
|
|
#endif
|
|
NRMat<T> result(a.nrows(),a.nrows());
|
|
result = (T)1.;
|
|
a.copyonwrite();
|
|
linear_solve(a, &result, det);
|
|
result.transposeme(); //tested with noncblas
|
|
return result;
|
|
}
|
|
|
|
//several matrix norms
|
|
template<class MAT>
|
|
typename LA_traits<MAT>::normtype MatrixNorm(const MAT &A, const char norm);
|
|
|
|
//condition number
|
|
template<class MAT>
|
|
typename LA_traits<MAT>::normtype CondNumber(const MAT &A, const char norm);
|
|
|
|
|
|
//general determinant
|
|
template<class MAT>
|
|
const typename LA_traits<MAT>::elementtype determinant(MAT a)//passed by value
|
|
{
|
|
typename LA_traits<MAT>::elementtype det;
|
|
if(a.nrows()!=a.ncols()) laerror("determinant of non-square matrix");
|
|
linear_solve(a,NULL,&det);
|
|
return det;
|
|
}
|
|
|
|
//general determinant destructive on input
|
|
template<class MAT>
|
|
const typename LA_traits<MAT>::elementtype determinant_destroy(MAT &a) //passed by reference
|
|
{
|
|
typename LA_traits<MAT>::elementtype det;
|
|
if(a.nrows()!=a.ncols()) laerror("determinant of non-square matrix");
|
|
linear_solve(a,NULL,&det);
|
|
return det;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// solves set of linear equations using gesvx
|
|
// input:
|
|
// A double precision matrix of dimension nn x mm, where min(nn, mm) >= n
|
|
// B double prec. array dimensioned as nrhs x n
|
|
// rhsCount nrhs - count of right hand sides
|
|
// eqCount n - count of equations
|
|
// eq use equilibration of matrix A before solving
|
|
// saveA if set, do no overwrite A if equilibration in effect
|
|
// rcond if not NULL, store the returned rcond value from dgesvx
|
|
// output:
|
|
// solution is stored in B
|
|
// the info parameter of gesvx is returned (see man dgesvx)
|
|
//------------------------------------------------------------------------------
|
|
template<class T>
|
|
int linear_solve_x(NRMat<T> &A, T *B, const int rhsCount, const int eqCount, const bool eq, const bool saveA, double *rcond);
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// for given square matrices A, B computes X = AB^{-1} as follows
|
|
// XB = A => B^TX^T = A^T
|
|
// input:
|
|
// _A double precision matrix of dimension nn x nn
|
|
// _B double prec. matrix of dimension nn x nn
|
|
// _useEq use equilibration suitable for badly conditioned matrices
|
|
// _rcond if not NULL, store the returned value of rcond fromd dgesvx
|
|
// output:
|
|
// solution is stored in _B
|
|
// the info parameter of dgesvx is returned (see man dgesvx)
|
|
//------------------------------------------------------------------------------
|
|
template<class T>
|
|
int multiply_by_inverse(NRMat<T> &A, NRMat<T> &B, bool useEq=false, double *rcond=NULL);
|
|
|
|
|
|
//general submatrix, INDEX will typically be NRVec<int> or even int*
|
|
//NOTE: in order to check consistency between nrows and rows in rows is a NRVec
|
|
//some advanced metaprogramming would be necessary
|
|
//application: e.g. ignoresign=true, equalsigns=true, indexshift= -1 ... elements of Slater overlaps for RHF
|
|
|
|
template<class MAT, class INDEX>
|
|
const NRMat<typename LA_traits<MAT>::elementtype> submatrix(const MAT a, const int nrows, const INDEX rows, const int ncols, const INDEX cols, int indexshift=0, bool ignoresign=false, bool equalsigns=false)
|
|
{
|
|
NRMat<typename LA_traits<MAT>::elementtype> r(nrows,ncols);
|
|
|
|
if(equalsigns) //make the element zero if signs of both indices are opposite
|
|
{
|
|
if(ignoresign)
|
|
{
|
|
for(int i=0; i<nrows; ++i)
|
|
for(int j=0; j<ncols; ++j)
|
|
r(i,j) = rows[i]*cols[j]<0?0.:a(std::abs(rows[i])+indexshift,std::abs(cols[j])+indexshift);
|
|
}
|
|
else
|
|
{
|
|
for(int i=0; i<nrows; ++i)
|
|
for(int j=0; j<ncols; ++j)
|
|
r(i,j) = rows[i]*cols[j]<0?0.:a(rows[i]+indexshift,cols[j]+indexshift);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(ignoresign)
|
|
{
|
|
for(int i=0; i<nrows; ++i)
|
|
for(int j=0; j<ncols; ++j)
|
|
r(i,j) = a(std::abs(rows[i])+indexshift,std::abs(cols[j])+indexshift);
|
|
}
|
|
else
|
|
{
|
|
for(int i=0; i<nrows; ++i)
|
|
for(int j=0; j<ncols; ++j)
|
|
r(i,j) = a(rows[i]+indexshift,cols[j]+indexshift);
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
//auxiliary routine to adjust eigenvectors to guarantee real logarithm
|
|
extern void adjustphases(NRMat<double> &v);
|
|
|
|
|
|
//declaration of template interface to cblas routines with full options available
|
|
//just to facilitate easy change between float, double, complex in a user code
|
|
//very incomplete, add new ones as needed
|
|
template<class T> inline void xcopy(int n, const T *x, int incx, T *y, int incy);
|
|
template<class T> inline void xaxpy(int n, const T &a, const T *x, int incx, T *y, int incy);
|
|
template<class T> inline T xdot(int n, const T *x, int incx, const T *y, int incy);
|
|
|
|
//specialized definitions have to be in the header file to be inlineable, eliminating any runtime overhead
|
|
|
|
template<>
|
|
inline void xcopy<double> (int n, const double *x, int incx, double *y, int incy)
|
|
{
|
|
cblas_dcopy(n, x, incx, y, incy);
|
|
}
|
|
|
|
template<>
|
|
inline void xaxpy<double>(int n, const double &a, const double *x, int incx, double *y, int incy)
|
|
{
|
|
cblas_daxpy(n, a, x, incx, y, incy);
|
|
}
|
|
|
|
template<>
|
|
inline double xdot<double>(int n, const double *x, int incx, const double *y, int incy)
|
|
{
|
|
return cblas_ddot(n,x,incx,y,incy);
|
|
}
|
|
|
|
|
|
|
|
//debugging aid: reconstruct an explicit matrix from the implicit version
|
|
//which provides gemv only
|
|
template<typename M, typename T>
|
|
NRMat<T> reconstructmatrix(const M &implicitmat)
|
|
{
|
|
NRMat<T> r(implicitmat.nrows(),implicitmat.ncols());
|
|
NRVec<T> rhs(0.,implicitmat.ncols());
|
|
NRVec<T> tmp(implicitmat.nrows());
|
|
for(int i=0; i<implicitmat.ncols(); ++i)
|
|
{
|
|
rhs[i]=1.;
|
|
implicitmat.gemv(0.,tmp,'n',1.,rhs);
|
|
for(int j=0; j<implicitmat.nrows(); ++j) r(j,i)=tmp[j];
|
|
rhs[i]=0.;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
//matrix functions via diagonalization
|
|
|
|
extern NRMat<double> realmatrixfunction(NRMat<double> a, double (*f) (double)); //a has to by in fact symmetric
|
|
extern NRMat<std::complex<double> > complexmatrixfunction(NRMat<double> a, double (*fre) (double), double (*fim) (double)); //a has to by in fact symmetric
|
|
|
|
template<typename T>
|
|
NRMat<T> matrixfunction(NRSMat<T> a, double (*f) (double)) //of symmetric/hermitian matrix
|
|
{
|
|
int n = a.nrows();
|
|
NRVec<double> w(n);
|
|
NRMat<T> v(n, n);
|
|
diagonalize(a, w, &v, 0);
|
|
|
|
for (int i=0; i<a.nrows(); i++) w[i] = (*f)(w[i]);
|
|
NRMat<T> u = v;
|
|
NRVec<T> ww=w; //diagmultl needs same type
|
|
v.diagmultl(ww);
|
|
NRMat<T> r(n, n);
|
|
r.gemm(0.0, u, 't', v, 'n', 1.0); //gemm will use 'c' for complex ones
|
|
return r;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
extern NRMat<T> matrixfunction(NRMat<T> a, std::complex<double> (*f)(const std::complex<double> &)) //of a general real/complex matrix
|
|
{
|
|
int n = a.nrows();
|
|
NRVec<std::complex<double> > w(n);
|
|
NRMat<std::complex<double> > u(n,n),v(n,n);
|
|
|
|
#ifdef debugmf
|
|
NRMat<std::complex<double> > a0=a;
|
|
#endif
|
|
|
|
gdiagonalize<T>(a, w, &u, &v, false,n,0,false,NULL,NULL);//a gets destroyed, eigenvectors are rows
|
|
NRVec< std::complex<double> > z = diagofproduct(u, v, 1, 1);
|
|
|
|
#ifdef debugmf
|
|
std::cout <<"TEST matrixfunction\n"<<w<<u<<v<<z;
|
|
std::cout <<"TEST matrixfunction1 "<< u*a0 - diagonalmatrix(w)*u<<std::endl;
|
|
std::cout <<"TEST matrixfunction2 "<< a0*v.transpose(1) - v.transpose(1)*diagonalmatrix(w)<<std::endl;
|
|
std::cout <<"TEST matrixfunction3 "<< u*v.transpose(1)<<diagonalmatrix(z)<<std::endl;
|
|
#endif
|
|
|
|
NRVec< std::complex<double> > wz(n);
|
|
for (int i=0; i<a.nrows(); i++) wz[i] = w[i]/z[i];
|
|
|
|
#ifdef debugmf
|
|
std::cout <<"TEST matrixfunction4 "<< a0<< v.transpose(true)*diagonalmatrix(wz)*u<<std::endl;
|
|
#endif
|
|
|
|
for (int i=0; i<a.nrows(); i++) w[i] = (*f)(w[i])/z[i];
|
|
u.diagmultl(w);
|
|
|
|
NRMat< std::complex<double> > r(n, n);
|
|
r.gemm(0.0, v, 'c', u, 'n', 1.0);
|
|
return (NRMat<T>) r; //convert back to real if applicable by the explicit decomplexifying constructor; it is NOT checked to which accuracy the imaginary part is actually zero
|
|
}
|
|
|
|
|
|
|
|
|
|
extern std::complex<double> sqrtinv(const std::complex<double> &);
|
|
extern double sqrtinv(const double);
|
|
|
|
//functions on matrices
|
|
inline NRMat<double> sqrt(const NRSMat<double> &a) { return matrixfunction(a,&std::sqrt); }
|
|
inline NRMat<double> sqrtinv(const NRSMat<double> &a) { return matrixfunction(a,&sqrtinv); }
|
|
inline NRMat<double> realsqrt(const NRMat<double> &a) { return realmatrixfunction(a,&std::sqrt); }
|
|
inline NRMat<double> realsqrtinv(const NRMat<double> &a) { return realmatrixfunction(a,&sqrtinv); }
|
|
inline NRMat<double> log(const NRSMat<double> &a) { return matrixfunction(a,&std::log); }
|
|
extern NRMat<double> log(const NRMat<double> &a);
|
|
extern NRMat<std::complex<double> > log(const NRMat<std::complex<double> > &a);
|
|
extern NRMat<std::complex<double> > exp0(const NRMat<std::complex<double> > &a);
|
|
extern NRMat<std::complex<double> > copytest(const NRMat<std::complex<double> > &a);
|
|
extern NRMat<double> copytest(const NRMat<double> &a);
|
|
extern NRMat<double> exp0(const NRMat<double> &a);
|
|
|
|
|
|
}//namespace
|
|
#endif
|