232 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			232 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|     LA: linear algebra C++ interface library
 | |
|     Copyright (C) 2022 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
 | |
| 
 | |
|     This program is free software: you can redistribute it and/or modify
 | |
|     it under the terms of the GNU General Public License as published by
 | |
|     the Free Software Foundation, either version 3 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU General Public License
 | |
|     along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifndef _CONTFRAC_H
 | |
| #define _CONTFRAC_H
 | |
| 
 | |
| #include "la_traits.h"
 | |
| #include "vec.h"
 | |
| 
 | |
| namespace LA {
 | |
| 
 | |
| //Support for rationals and a simple finite continued fraction class
 | |
| //NOTE: 0 on any position >0 means actually infinity; simplify()  shortens the vector
 | |
| //includes Gosper's arithmetics - cf. https://perl.plover.com/classes/cftalk/TALK
 | |
| //maybe implement the self-feeding  Gosper's algorithm for sqrt(int)
 | |
| //maybe do not interpret a_i=0 i>0 as termination???
 | |
| 
 | |
| template <typename T>
 | |
| class ContFrac;
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| class Rational {
 | |
| public:
 | |
| 	T num;
 | |
| 	T den;
 | |
| 
 | |
| 	Rational() {};
 | |
| 	Rational(const T p, const T q) : num(p),den(q) {};
 | |
| 	explicit Rational(const T (&a)[2]) :num(a[0]), den(a[1]) {};
 | |
| 	explicit Rational(const ContFrac<T> &cf) {cf.convergent(&num,&den);};
 | |
| 	void simplify();
 | |
| 
 | |
| 	//basic rational arithmetics 
 | |
| 	Rational operator-() const {return Rational(-num,den);};
 | |
| 	Rational & operator+=(const T  &rhs) {num+=den*rhs; return *this;};
 | |
| 	Rational & operator-=(const T  &rhs) {num-=den*rhs; return *this;};
 | |
| 	Rational & operator*=(const T  &rhs);
 | |
| 	Rational & operator/=(const T  &rhs);
 | |
| 	Rational operator+(const T  &rhs) const {Rational r(*this); return r+=rhs;};
 | |
| 	Rational operator-(const T  &rhs) const {Rational r(*this); return r-=rhs;};
 | |
| 	Rational operator*(const T  &rhs) const {Rational r(*this); return r*=rhs;};
 | |
| 	Rational operator/(const T  &rhs) const {Rational r(*this); return r/=rhs;};
 | |
| 	Rational & operator*=(const Rational &rhs);
 | |
| 	Rational & operator/=(const Rational &rhs) {return (*this)*=Rational(rhs.den,rhs.num);};
 | |
| 	Rational operator+(const Rational  &rhs) const;
 | |
|         Rational operator-(const Rational  &rhs) const;
 | |
|         Rational operator*(const Rational  &rhs) const {Rational r(*this); return r*=rhs;};
 | |
|         Rational operator/(const Rational  &rhs) const {Rational r(*this); return r/=rhs;};
 | |
| 	Rational & operator+=(const Rational &rhs) {*this = *this+rhs; return *this;};
 | |
| 	Rational & operator-=(const Rational &rhs) {*this = *this-rhs; return *this;};
 | |
| 
 | |
| 	//combination with continued fractions
 | |
| 	ContFrac<T> operator+(const ContFrac<T> &rhs) const {return rhs + *this;};
 | |
| 	ContFrac<T> operator-(const ContFrac<T> &rhs) const {return -rhs + *this;};
 | |
| 	ContFrac<T> operator*(const ContFrac<T> &rhs) const {return rhs * *this;};
 | |
| 	ContFrac<T> operator/(const ContFrac<T> &rhs) const {return rhs.reciprocal() * *this;};
 | |
| 
 | |
| 
 | |
| 	//relational operators, relying that operator- yields a form with a positive denominator
 | |
| 	bool operator==(const Rational  &rhs) const {Rational t= *this-rhs; return t.num==0;};
 | |
| 	bool operator!=(const Rational  &rhs) const {Rational t= *this-rhs; return t.num!=0;};
 | |
| 	bool operator>=(const Rational  &rhs) const {Rational t= *this-rhs; return t.num>=0;};
 | |
| 	bool operator<=(const Rational  &rhs) const {Rational t= *this-rhs; return t.num<=0;};
 | |
| 	bool operator>(const Rational  &rhs) const {Rational t= *this-rhs; return t.num>0;};
 | |
|         bool operator<(const Rational  &rhs) const {Rational t= *this-rhs; return t.num<0;};
 | |
| 
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| std::ostream & operator<<(std::ostream &s, const Rational<T> &x) 
 | |
| {
 | |
| s<<x.num<<"/"<<x.den;
 | |
| return s;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| std::istream & operator>>(std::istream &s, Rational<T> &x)
 | |
| {
 | |
| char c;
 | |
| s>>x.num>>c>>x.den;
 | |
| return s;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| class Homographic;
 | |
| 
 | |
| template <typename T>
 | |
| class BiHomographic;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| class ContFrac : public NRVec<T> {
 | |
| private:
 | |
| 	int size() const; //prevent confusion with vector size
 | |
| public:
 | |
| 	ContFrac():  NRVec<T>() {};
 | |
| 	explicit ContFrac(const std::list<T> &x) : NRVec<T>(x) {};
 | |
| 	template<int SIZE>  ContFrac(const T (&a)[SIZE]) : NRVec<T>(a) {};
 | |
| 	ContFrac(const NRVec<T> &v) : NRVec<T>(v) {}; //allow implicit conversion from NRVec
 | |
| 	ContFrac(const int n) : NRVec<T>(n+1) {};
 | |
| 	explicit ContFrac(double x, const int n, const T thres=0); //WARNING: it might yield a non-canonical form 
 | |
| 	//we could make a template for analogous conversion from an arbitrary-precision type
 | |
| 	ContFrac(T p, T q); //should yield a canonical form
 | |
| 	explicit ContFrac(const Rational<T> &r) : ContFrac(r.num,r.den) {};
 | |
| 
 | |
| 	void canonicalize();
 | |
| 	void convergent(T *p, T*q, const int trunc= -1) const;
 | |
| 	Rational<T> rational(const int trunc= -1) const {T p,q; convergent(&p,&q,trunc); return Rational<T>(p,q);};
 | |
| 	double value(const int trunc= -1) const; //we could make also a template usable with an arbitrary-precision type
 | |
| 	ContFrac reciprocal() const;
 | |
| 	ContFrac operator-() const; //unary minus
 | |
| 	int length() const {return NRVec<T>::size()-1;};
 | |
| 	void resize(const int n, const bool preserve=true) 
 | |
| 		{
 | |
| 		int nold=length();
 | |
| 		NRVec<T>::resize(n+1,preserve);
 | |
| 		if(preserve) for(int i=nold+1; i<=n;++i) (*this)[i]=0;
 | |
| 		} 
 | |
| 
 | |
| 	//arithmetics with a single ContFrac operand
 | |
| 	ContFrac operator+(const Rational<T> &rhs) const {Homographic<T> h({{rhs.num,rhs.den},{rhs.den,0}}); return h.value(*this);};
 | |
| 	ContFrac operator-(const Rational<T> &rhs) const {Homographic<T> h({{-rhs.num,rhs.den},{rhs.den,0}}); return h.value(*this);};
 | |
| 	ContFrac operator*(const Rational<T> &rhs) const {Homographic<T> h({{0,rhs.num},{rhs.den,0}}); return h.value(*this);};
 | |
| 	ContFrac operator/(const Rational<T> &rhs) const {Homographic<T> h({{0,rhs.den},{rhs.num,0}}); return h.value(*this);};
 | |
| 
 | |
| 	ContFrac & operator+=(const T  &rhs)  {this->copyonwrite(); (*this)[0]+=rhs; return *this;};
 | |
| 	ContFrac & operator-=(const T  &rhs)  {this->copyonwrite(); (*this)[0]-=rhs; return *this;};
 | |
| 	ContFrac operator+(const T  &rhs) const {ContFrac r(*this); r+=rhs; return r;};
 | |
| 	ContFrac operator-(const T  &rhs) const {ContFrac r(*this); r-=rhs; return r;};
 | |
| 	ContFrac operator*(const T &rhs)  const {Homographic<T> h({{0,rhs},{1,0}}); return h.value(*this);};
 | |
| 	ContFrac operator/(const T &rhs)  const {Homographic<T> h({{0,1},{rhs,0}}); return h.value(*this);};
 | |
| 
 | |
| 	//arithmetics with two ContFrac operands
 | |
| 	ContFrac operator+(const ContFrac &rhs) const {BiHomographic<T> h({{{0,1},{1,0}},{{1,0},{0,0}}}); return h.value(*this,rhs);};
 | |
| 	ContFrac operator-(const ContFrac &rhs) const {BiHomographic<T> h({{{0,1},{-1,0}},{{1,0},{0,0}}}); return h.value(*this,rhs);};
 | |
| 	ContFrac operator*(const ContFrac &rhs) const {BiHomographic<T> h({{{0,0},{0,1}},{{1,0},{0,0}}}); return h.value(*this,rhs);};
 | |
| 	ContFrac operator/(const ContFrac &rhs) const {BiHomographic<T> h({{{0,1},{0,0}},{{0,0},{1,0}}}); return h.value(*this,rhs);};
 | |
| 
 | |
| 	
 | |
| 	//relational operators, guaranteed only to work correctly for canonicalized CF!
 | |
| 	T compare(const ContFrac  &rhs) const;
 | |
| 	bool operator==(const ContFrac  &rhs) const {return compare(rhs)==0;};
 | |
| 	bool operator>(const ContFrac  &rhs) const {return compare(rhs)>0;};
 | |
| 	bool operator<(const ContFrac  &rhs) const {return rhs.operator>(*this);};
 | |
| 	bool operator!=(const ContFrac  &rhs) const {return ! this->operator==(rhs) ;}
 | |
| 	bool operator<=(const ContFrac  &rhs) const {return ! this->operator>(rhs) ;}
 | |
| 	bool operator>=(const ContFrac  &rhs) const {return ! this->operator<(rhs) ;}
 | |
| 
 | |
| 	//iterator
 | |
|         class iterator {
 | |
|         private:
 | |
|                 T *p;
 | |
|         public:
 | |
|                 iterator() {};
 | |
|                 ~iterator() {};
 | |
| 		iterator(T *v): p(v) {};
 | |
|                 bool operator==(const iterator rhs) const {return p==rhs.p;}
 | |
|                 bool operator!=(const iterator rhs) const {return p!=rhs.p;}
 | |
|                 iterator operator++() {return ++p;}
 | |
|                 iterator operator++(int) {return p++;}
 | |
|                 T& operator*() const {return *p;}
 | |
|                 T *operator->() const {return p;}
 | |
|         };
 | |
|         iterator begin() const {return NRVec<T>::v;}
 | |
|         iterator end() const {return NRVec<T>::v+NRVec<T>::nn;}
 | |
|         iterator beyondend() const {return NRVec<T>::v+NRVec<T>::nn+1;}
 | |
| 
 | |
| };
 | |
| 
 | |
| //for Gosper's arithmetic
 | |
| 
 | |
| template <typename T>
 | |
| class Homographic {
 | |
| public:
 | |
| T v[2][2]; //{{a,b},{c,d}} for (a+b.x)/(c+d.x) i.e. [denominator][power_x]
 | |
| 
 | |
| 	Homographic(){};
 | |
| 	explicit Homographic(const T (&a)[2][2]) {memcpy(v,a,2*2*sizeof(T));};
 | |
| 	ContFrac<T> value(const ContFrac<T>&z) const;
 | |
| 
 | |
| 	Homographic input(const T &x, const bool inf) const; 
 | |
| 	Homographic output(const T &x) const;
 | |
| 	bool outputready(T &x, bool first) const;
 | |
| 	bool terminate() const;
 | |
| 	
 | |
| };
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| class BiHomographic {
 | |
| public:
 | |
| T v[2][2][2];  //{{{a,b},{c,d}},{{e,f},{g,h}}} i.e.[denominator][power_y][power_x]
 | |
| 	
 | |
| 	BiHomographic(){};
 | |
| 	explicit BiHomographic(const T (&a)[2][2][2]) {memcpy(v,a,2*2*2*sizeof(T));};
 | |
| 	ContFrac<T> value(const ContFrac<T>&x, const ContFrac<T>&y) const;
 | |
| 
 | |
| 	BiHomographic inputx(const T &x, const bool inf) const;
 | |
| 	BiHomographic inputy(const T &y, const bool inf) const;
 | |
|         BiHomographic output(const T &z) const;
 | |
| 	int inputselect() const;
 | |
|         bool outputready(T &x,bool first) const;
 | |
|         bool terminate() const;
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| }//namespace
 | |
| #endif
 |