213 lines
5.9 KiB
C++
213 lines
5.9 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2025 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef _lanczos_h
|
|
#define _lanczos_h
|
|
#include "vec.h"
|
|
#include "smat.h"
|
|
#include "mat.h"
|
|
#include "sparsemat.h"
|
|
#include "nonclass.h"
|
|
#include "auxstorage.h"
|
|
|
|
//TODO:
|
|
//@@@implement restart when Krylov space is exceeded
|
|
//@@@implement inital guess of more than 1 vector (also in davidson) and block version of the methods
|
|
|
|
namespace LA {
|
|
|
|
//Lanczos diagonalization of hermitean matrix
|
|
//matrix can be any class which has nrows(), ncols(), diagonalof(), issymmetric(), and gemv() available
|
|
//does not even have to be explicitly stored - direct CI
|
|
//therefore the whole implementation must be a template in a header
|
|
|
|
|
|
|
|
template <typename T, typename Matrix>
|
|
extern void lanczos(const Matrix &bigmat, NRVec<T> &eivals, NRVec<T> *eivecs, const char *eivecsfile,
|
|
int nroots=1, const bool verbose=0, const double eps=1e-6,
|
|
const bool incore=1, int maxit=100, const int maxkrylov = 1000,
|
|
void (*initguess)(NRVec<T> &)=NULL, const typename LA_traits<T>::normtype *target=NULL)
|
|
{
|
|
if(!bigmat.issymmetric()) laerror("lanczos only for hermitean matrices");
|
|
bool flag=0;
|
|
int n=bigmat.nrows();
|
|
if ( n!= (int)bigmat.ncols()) laerror("non-square matrix in lanczos");
|
|
if(eivals.size()<nroots) laerror("too small eivals dimension in lanczos");
|
|
|
|
NRVec<T> vec1(n),vec2(n);
|
|
NRVec<T> *v0,*v1;
|
|
AuxStorage<T> *s0,*s1;
|
|
|
|
if(incore)
|
|
{
|
|
v0 = new NRVec<T>[maxkrylov];
|
|
}
|
|
else
|
|
{
|
|
s0 = new AuxStorage<T>;
|
|
}
|
|
|
|
int i,j;
|
|
|
|
if(nroots>=maxkrylov) nroots =maxkrylov-1;
|
|
int nroot=0;
|
|
int oldnroot;
|
|
|
|
|
|
//default guess based on lowest diagonal element of the matrix
|
|
if(initguess) initguess(vec1);
|
|
else
|
|
{
|
|
const T *diagonal = bigmat.diagonalof(vec2,false,true);
|
|
typename LA_traits<T>::normtype t=1e100; int i,j;
|
|
vec1=0;
|
|
for(i=0, j= -1; i<n; ++i) if(LA_traits<T>::realpart(diagonal[i])<t) {t=LA_traits<T>::realpart(diagonal[i]); j=i;}
|
|
vec1[j]=1;
|
|
}
|
|
|
|
NRVec<typename LA_traits<T>::normtype> alpha(maxkrylov),beta(maxkrylov-1);
|
|
|
|
//initial step
|
|
vec1.normalize();
|
|
if(incore) v0[0]=vec1; else s0->put(vec1,0);
|
|
bigmat.gemv(0,vec2,'n',1,vec1); //avoid bigmat.operator*(vec), since that needs to allocate another n-sized vector
|
|
{
|
|
T tmp=vec2*vec1;
|
|
alpha[0]= LA_traits<T>::realpart(tmp);
|
|
if(LA_traits<T>::imagpart(tmp)>1e-6) laerror("matrix probably not hermitian in lanczos");
|
|
}
|
|
vec2.axpy(-alpha[0],vec1);
|
|
|
|
NRVec<typename LA_traits<T>::normtype> r(1); r[0]=alpha[0];
|
|
NRVec<typename LA_traits<T>::normtype> rold;
|
|
NRMat<typename LA_traits<T>::normtype> smallV;
|
|
int krylovsize=1;
|
|
//iterative Lanczos
|
|
int it=0;
|
|
for(j=1; j<maxkrylov;++j)
|
|
{
|
|
++it;
|
|
if(it>maxit) {std::cout <<"too many interations in lanczos\n"; flag=1; goto finished;}
|
|
++krylovsize;
|
|
//extend the Krylov space (last w vector expected in vec2, last v vector in vec1)
|
|
beta[j-1] = vec2.norm();
|
|
if(beta[j-1] > 0)
|
|
{
|
|
vec2 /= beta[j-1];
|
|
}
|
|
else
|
|
{
|
|
laerror("zero norm in lanczos");
|
|
//could generate an arbitrary vector and orthonormalize it
|
|
}
|
|
if(incore) v0[j]=vec2; else s0->put(vec2,j);
|
|
vec1 *= -beta[j-1];
|
|
bigmat.gemv(1,vec1,'n',1,vec2);
|
|
{
|
|
T tmp=vec1*vec2;
|
|
alpha[j]= LA_traits<T>::realpart(tmp);
|
|
if(LA_traits<T>::imagpart(tmp)>1e-6) laerror("matrix probably not hermitian in lanczos");
|
|
}
|
|
vec1.axpy(-alpha[j],vec2);
|
|
vec1.swap(vec2); //move new w vector to vec2, new v vector to vec1
|
|
|
|
//diagonalize the tridiagonal
|
|
smallV.resize(j+1,j+1);
|
|
rold=r;
|
|
r=alpha.subvector(0,j);
|
|
NRVec<typename LA_traits<T>::normtype> rr=beta.subvector(0,j-1);
|
|
diagonalize3(r,rr,&smallV);
|
|
if(target) //resort eigenpairs by distance from the target
|
|
{
|
|
NRVec<typename LA_traits<T>::normtype> key(j+1);
|
|
for(int i=0; i<=j; ++i) key[i] = abs(r[i] - *target);
|
|
NRPerm<int> p(j+1);
|
|
key.sort(0,p);
|
|
|
|
NRVec<typename LA_traits<T>::normtype> rp(j+1);
|
|
NRMat<typename LA_traits<T>::normtype> smallVp(j+1,j+1);
|
|
for(int i=0; i<=j; ++i)
|
|
{
|
|
rp[i]= r[p[i+1]-1];
|
|
for(int k=0; k<=j; ++k) smallVp(k,i) = smallV(k,p[i+1]-1);
|
|
}
|
|
r = rp;
|
|
smallV = smallVp;
|
|
}
|
|
|
|
if(verbose)
|
|
{
|
|
for(int iroot=0; iroot<std::min(krylovsize,nroots); ++iroot)
|
|
{
|
|
std::cout <<"Lanczos: iter="<<it <<" dim="<<krylovsize<<" root="<<iroot<<" eigenvalue="<<r[iroot]<<"\n";
|
|
}
|
|
std::cout.flush();
|
|
}
|
|
//convergence test when we have enough roots even in rold
|
|
if(krylovsize>nroots)
|
|
{
|
|
bool conv=true;
|
|
for(int iroot=0; iroot<nroots; ++iroot)
|
|
if(abs(r[iroot]-rold[iroot])>eps) conv=false;
|
|
if(conv)
|
|
{
|
|
flag=0;
|
|
goto converged;
|
|
}
|
|
}
|
|
}
|
|
flag=1;
|
|
goto finished;
|
|
|
|
converged:
|
|
AuxStorage<typename LA_traits<T>::elementtype> *ev;
|
|
if(eivecsfile) ev = new AuxStorage<typename LA_traits<T>::elementtype>(eivecsfile);
|
|
if(verbose) {std::cout << "Lanczos converged in "<<it<<" iterations.\n"; std::cout.flush();}
|
|
for(nroot=0; nroot<nroots; ++nroot)
|
|
{
|
|
eivals[nroot]=r[nroot];
|
|
if(eivecs)
|
|
{
|
|
vec1=0;
|
|
for(j=0; j<krylovsize; ++j )
|
|
{
|
|
if(!incore) s0->get(vec2,j);
|
|
vec1.axpy(smallV(j,nroot),incore?v0[j]:vec2);
|
|
}
|
|
vec1.normalize();
|
|
if(eivecs) eivecs[nroot]|=vec1;
|
|
if(eivecsfile)
|
|
{
|
|
ev->put(vec1,nroot);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(eivecsfile) delete ev;
|
|
|
|
|
|
finished:
|
|
if(incore) {delete[] v0;}
|
|
else {delete s0;}
|
|
|
|
if(flag) laerror("no convergence in lanczos");
|
|
}
|
|
|
|
}//namespace
|
|
#endif
|