2101 lines
48 KiB
C++
2101 lines
48 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2021 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "vec.h"
|
|
#include "permutation.h"
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <list>
|
|
#include "qsort.h"
|
|
|
|
|
|
namespace LA {
|
|
|
|
template <typename T>
|
|
void NRPerm<T>::identity()
|
|
{
|
|
T n=this->size();
|
|
#ifdef DEBUG
|
|
if(n<0) laerror("invalid permutation size");
|
|
#endif
|
|
if(n==0) return;
|
|
this->copyonwrite();
|
|
for(T i=1; i<=n; ++i) (*this)[i]=i;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool NRPerm<T>::is_identity() const
|
|
{
|
|
T n=this->size();
|
|
#ifdef DEBUG
|
|
if(n<0) laerror("invalid permutation size");
|
|
#endif
|
|
if(n==0) return 1;
|
|
for(T i=1; i<=n; ++i) if((*this)[i]!=i) return 0;
|
|
return 1;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
bool NRPerm<T>::is_valid() const
|
|
{
|
|
T n = this->size();
|
|
if(n<0) return 0;
|
|
NRVec_from1<T> used(n);
|
|
used.clear();
|
|
for(T i=1; i<=n; ++i)
|
|
{
|
|
T x= (*this)[i];
|
|
if(x<1||x>n) return 0;
|
|
used[x] += 1;
|
|
}
|
|
for(T i=1; i<=n; ++i) if(used[i]!=1) return 0;
|
|
return 1;
|
|
}
|
|
|
|
template <typename T>
|
|
NRPerm<T> NRPerm<T>::inverse() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("inverse of invalid permutation");
|
|
#endif
|
|
|
|
NRPerm<T> q(this->size());
|
|
for(T i=1; i<=this->size(); ++i) q[(*this)[i]]=i;
|
|
return q;
|
|
}
|
|
|
|
template <typename T>
|
|
NRPerm<T> NRPerm<T>::reverse() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("reverse of invalid permutation");
|
|
#endif
|
|
|
|
NRPerm<T> q(this->size());
|
|
for(T i=1; i<=this->size(); ++i) q[i]=(*this)[this->size()-i+1];
|
|
return q;
|
|
}
|
|
|
|
template <typename T>
|
|
NRPerm<T> NRPerm<T>::operator&(const NRPerm<T> &q) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid() || !q.is_valid()) laerror("concatenation of invalid permutation");
|
|
#endif
|
|
|
|
NRPerm<T> r(size()+q.size());
|
|
for(int i=1; i<=size(); ++i) r[i]=(*this)[i];
|
|
for(int i=1; i<=q.size(); ++i) r[size()+i]=size()+q[i];
|
|
return r;
|
|
}
|
|
|
|
template <typename T>
|
|
NRPerm<T> NRPerm<T>::operator|(const NRPerm<T> &q) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid() || !q.is_valid()) laerror("concatenation of invalid permutation");
|
|
#endif
|
|
|
|
NRPerm<T> r(size()+q.size());
|
|
for(int i=1; i<=q.size(); ++i) r[i]=size()+q[i];
|
|
for(int i=1; i<=size(); ++i) r[q.size()+i]=(*this)[i];
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
NRPerm<T> NRPerm<T>::operator*(const NRPerm<T> &q) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid() || !q.is_valid()) laerror("multiplication of invalid permutation");
|
|
#endif
|
|
|
|
T n=this->size();
|
|
if(n!=q.size()) laerror("product of incompatible permutations");
|
|
NRPerm<T> r(n);
|
|
for(T i=1; i<=n; ++i) r[i] = (*this)[q[i]];
|
|
return r;
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
NRPerm<T> NRPerm<T>::conjugate_by(const NRPerm<T> &q) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid() || !q.is_valid()) laerror("multiplication of invalid permutation");
|
|
#endif
|
|
|
|
T n=this->size();
|
|
if(n!=q.size()) laerror("product of incompatible permutations");
|
|
NRPerm<T> qi=q.inverse();
|
|
NRPerm<T> r(n);
|
|
for(T i=1; i<=n; ++i) r[i] = qi[(*this)[q[i]]];
|
|
return r;
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
CyclePerm<T> CyclePerm<T>::conjugate_by(const CyclePerm<T> &q) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid() || !q.is_valid()) laerror("multiplication of invalid permutation");
|
|
#endif
|
|
return q.inverse()*((*this)*q);
|
|
}
|
|
|
|
|
|
//NOTE: for larger permutations it might be more efficient to use cycle decomposition but where exactly the breakeven is?
|
|
//at the moment we do it the trivial way for small permutations and using sort for larger ones
|
|
template <typename T>
|
|
int NRPerm<T>::parity() const
|
|
{
|
|
if(!this->is_valid()) return 0;
|
|
T n=this->size();
|
|
if(n==1) return 1;
|
|
if(n>=10) //???
|
|
{
|
|
NRPerm<T> tmp(*this);
|
|
return (tmp.sort()&1) ? -1:1;
|
|
}
|
|
T count=0;
|
|
for(T i=2;i<=n;i++) for(T j=1;j<i;j++) if((*this)[j]>(*this)[i]) count++;
|
|
return (count&1)? -1:1;
|
|
}
|
|
|
|
template <typename T>
|
|
NRPerm<T>::NRPerm(const CyclePerm<T> &rhs, const int n)
|
|
{
|
|
#ifdef DEBUG
|
|
if(!rhs.is_valid()) laerror("invalid cycle permutation");
|
|
#endif
|
|
int m;
|
|
if(n) m=n; else m=rhs.max();
|
|
this->resize(m);
|
|
|
|
identity();
|
|
T ncycles=rhs.size();
|
|
for(T j=1; j<=ncycles; ++j)
|
|
{
|
|
T length= rhs[j].size();
|
|
for(T i=1; i<=length; ++i) (*this)[rhs[j][i]] = rhs[j][i%length+1];
|
|
}
|
|
#ifdef DEBUG
|
|
if(!is_valid()) laerror("internal error in NRPerm constructor from CyclePerm");
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
void NRPerm<T>::randomize(void)
|
|
{
|
|
int n=this->size();
|
|
if(n<=0) laerror("cannot randomize empty permutation");
|
|
this->copyonwrite();
|
|
this->identity();
|
|
for(int i=n-1; i>=1; --i)
|
|
{
|
|
int j= RANDINT32()%(i+1);
|
|
T tmp = (*this)[i+1];
|
|
(*this)[i+1]=(*this)[j+1];
|
|
(*this)[j+1]=tmp;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool NRPerm<T>::next(void)
|
|
{
|
|
this->copyonwrite();
|
|
int n=this->size();
|
|
// Find longest non-increasing suffix and the pivot
|
|
int i = n;
|
|
while (i > 1 && (*this)[i-1] >= (*this)[i]) --i;
|
|
if (i<=1) return false;
|
|
T piv=(*this)[i-1];
|
|
|
|
// Find rightmost element greater than the pivot
|
|
int j = n;
|
|
while ((*this)[j] <= piv) --j;
|
|
// Now the value array[j] will become the new pivot, Assertion: j >= i
|
|
|
|
// Swap the pivot with j
|
|
(*this)[i - 1] = (*this)[j];
|
|
(*this)[j] = piv;
|
|
|
|
// Reverse the suffix
|
|
j = n;
|
|
while (i < j) {
|
|
T temp = (*this)[i];
|
|
(*this)[i] = (*this)[j];
|
|
(*this)[j] = temp;
|
|
i++;
|
|
j--;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//Algorithm L from Knuth's volume 4
|
|
template <typename T>
|
|
PERM_RANK_TYPE NRPerm<T>::generate_all(void (*callback)(const NRPerm<T>&), int select)
|
|
{
|
|
int n=this->size();
|
|
NRVec_from1<T> c((T)0,n);
|
|
NRVec_from1<T> d((T)1,n);
|
|
int j,k,s;
|
|
T q;
|
|
T t;
|
|
|
|
this->identity();
|
|
PERM_RANK_TYPE sumperm=0;
|
|
|
|
p2:
|
|
sumperm++;
|
|
if(callback) {if(!select || (select&1) == (sumperm&1)) {(*callback)(*this); this->copyonwrite();}}
|
|
j=n; s=0;
|
|
p4:
|
|
q=c[j]+d[j];
|
|
if(q<0) goto p7;
|
|
if(q==j) goto p6;
|
|
|
|
t=(*this)[j-c[j]+s]; (*this)[j-c[j]+s]=(*this)[j-q+s]; (*this)[j-q+s]=t;
|
|
c[j]=q;
|
|
goto p2;
|
|
p6:
|
|
if(j==1) goto end;
|
|
s++;
|
|
p7:
|
|
d[j]= -d[j];
|
|
j--;
|
|
goto p4;
|
|
|
|
end:
|
|
return select? sumperm/2:sumperm;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
static PermutationAlgebra<T,T> *list_all_return;
|
|
|
|
static PERM_RANK_TYPE list_all_index;
|
|
|
|
template <typename T>
|
|
static void list_all_callback(const NRPerm<T> &p)
|
|
{
|
|
(*list_all_return<T>)[list_all_index].weight= (list_all_index&1)?-1:1;
|
|
(*list_all_return<T>)[list_all_index].perm=p;
|
|
(*list_all_return<T>)[list_all_index].perm.copyonwrite();
|
|
++list_all_index;
|
|
}
|
|
|
|
template <typename T>
|
|
PermutationAlgebra<T,T> NRPerm<T>::list_all(int parity_sel)
|
|
{
|
|
PERM_RANK_TYPE number = factorial(this->size());
|
|
if(parity_sel) number/=2;
|
|
PermutationAlgebra<T,T> ret(number);
|
|
list_all_return<T> = &ret;
|
|
list_all_index=0;
|
|
this->generate_all(list_all_callback,parity_sel);
|
|
return ret;
|
|
}
|
|
|
|
|
|
template <typename T, typename R>
|
|
bool PermutationAlgebra<T,R>::operator==(PermutationAlgebra<T,R> &rhs)
|
|
{
|
|
simplify();
|
|
rhs.simplify();
|
|
if(size()!=rhs.size()) return false;
|
|
for(int i=0; i<size(); ++i) if((*this)[i].weight!=rhs[i].weight || (*this)[i].perm!=rhs[i].perm) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
//Algorithm L2 from Knuth's volume 4 for multiset permutations
|
|
//input must be initialized with (repeated) numbers in any order
|
|
template <typename T>
|
|
PERM_RANK_TYPE NRPerm<T>::generate_all_multi(void (*callback)(const NRPerm<T>&))
|
|
{
|
|
PERM_RANK_TYPE sumperm=0;
|
|
this->copyonwrite();
|
|
myheapsort(this->size(),&(*this)[1],1);
|
|
while(1)
|
|
{
|
|
int j,k,l;
|
|
T t;
|
|
|
|
sumperm++;
|
|
if(callback) (*callback)(*this);
|
|
j=this->size()-1;
|
|
while(j>0 && (*this)[j]>=(*this)[j+1]) j--;
|
|
if(j==0) break; /*finished*/
|
|
l=this->size();
|
|
while((*this)[j]>=(*this)[l]) l--;
|
|
t=(*this)[j];(*this)[j]=(*this)[l];(*this)[l]=t;
|
|
k=j+1;
|
|
l=this->size();
|
|
while(k<l)
|
|
{
|
|
t=(*this)[k];(*this)[k]=(*this)[l];(*this)[l]=t;
|
|
k++;l--;
|
|
}
|
|
}
|
|
return sumperm;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
static T _n;
|
|
|
|
template <typename T>
|
|
static void (*_callback)(const NRPerm<T>& );
|
|
|
|
static PERM_RANK_TYPE _sumperm;
|
|
|
|
template <typename T>
|
|
static NRPerm<T> *_perm;
|
|
|
|
template <typename T>
|
|
static void permg(T n)
|
|
{
|
|
if(n<= _n<T>)
|
|
{
|
|
for(T i=1;i<= _n<T>;i++)
|
|
{
|
|
if(!(*_perm<T>)[i]) //place not occupied
|
|
{
|
|
(*_perm<T>)[i]=n;
|
|
permg(n+1);
|
|
(*_perm<T>)[i]=0;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_sumperm++;
|
|
if(_callback<T>) (*_callback<T>)(*_perm<T>);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE NRPerm<T>::generate_all2(void (*callback)(const NRPerm<T>&))
|
|
{
|
|
this->copyonwrite();
|
|
this->clear();
|
|
_n<T> = this->size();
|
|
_callback<T> =callback;
|
|
_sumperm=0;
|
|
_perm<T> = this;
|
|
permg(1);
|
|
return _sumperm;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE NRPerm<T>::generate_all_lex(void (*callback)(const NRPerm<T>&))
|
|
{
|
|
PERM_RANK_TYPE np=0;
|
|
this->identity();
|
|
do{
|
|
++np;
|
|
if(callback) (*callback)(*this);
|
|
}while(this->next());
|
|
return np;
|
|
}
|
|
|
|
template <typename T>
|
|
static T _n2;
|
|
|
|
template <typename T>
|
|
static void (*_callback2)(const NRPerm<T>& );
|
|
|
|
static PERM_RANK_TYPE _sumperm2;
|
|
|
|
template <typename T>
|
|
static NRPerm<T> *_perm2;
|
|
|
|
template <typename T>
|
|
static const T *pclasses2;
|
|
|
|
|
|
static int sameclass;
|
|
|
|
template <typename T>
|
|
static void permg2(T n) //place number n in a free box in all possible ways and according to restrictions
|
|
{
|
|
T i;
|
|
if(n<=_n2<T>)
|
|
{
|
|
T c=pclasses2<T>[n];
|
|
for(i=1;i<=_n2<T>;i++)
|
|
{
|
|
if((*_perm2<T>)[i]>=1) goto skipme; /*place already occupied*/
|
|
if (sameclass)
|
|
{
|
|
if(sameclass==1 && c!=pclasses2<T>[i]) goto skipme;
|
|
if(sameclass== -1 && c==pclasses2<T>[i] ) goto skipme;
|
|
if(sameclass== -2) /*allow only permutations which leave elements of each class sorted*/
|
|
{
|
|
T j,k;
|
|
for(j=i+1; j<=_n2<T>; j++)
|
|
if((k=(*_perm2<T>)[j])>=1)
|
|
if(/* automatically fulfilled k<n &&*/ c==pclasses2<T>[k]) goto skipme;
|
|
}
|
|
}
|
|
/*put it there and next number*/
|
|
(*_perm2<T>)[i]=n;
|
|
permg2(n+1);
|
|
(*_perm2<T>)[i]=0;
|
|
skipme:;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_sumperm2++;
|
|
if(_callback2<T>) {(*_callback2<T>)(*_perm2<T>); _perm2<T> -> copyonwrite();}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE NRPerm<T>::generate_restricted(void (*callback)(const NRPerm<T>&), const NRVec_from1<T> &classes, int restriction_type)
|
|
{
|
|
this->copyonwrite();
|
|
this->clear();
|
|
_n2<T> = this->size();
|
|
_callback2<T> =callback;
|
|
_sumperm2=0;
|
|
_perm2<T> = this;
|
|
pclasses2<T> = &classes[1]-1;
|
|
sameclass=restriction_type;
|
|
permg2<T>(1);
|
|
return _sumperm2;
|
|
}
|
|
|
|
template <typename T>
|
|
static PermutationAlgebra<T,T> *list_restricted_return;
|
|
|
|
static PERM_RANK_TYPE list_restricted_index;
|
|
|
|
static bool list_restricted_invert;
|
|
|
|
template <typename T>
|
|
static void list_restricted_callback(const NRPerm<T> &p)
|
|
{
|
|
(*list_restricted_return<T>)[list_restricted_index].weight=p.parity();
|
|
(*list_restricted_return<T>)[list_restricted_index].perm= list_restricted_invert?p.inverse():p;
|
|
(*list_restricted_return<T>)[list_restricted_index].perm.copyonwrite();
|
|
++list_restricted_index;
|
|
}
|
|
|
|
template <typename T>
|
|
PermutationAlgebra<T,T> NRPerm<T>::list_restricted(const NRVec_from1<T> &classes, int restriction_type, bool invert)
|
|
{
|
|
PERM_RANK_TYPE number = this->generate_restricted(NULL,classes,restriction_type);
|
|
PermutationAlgebra<T,T> ret(number);
|
|
list_restricted_return<T> = &ret;
|
|
list_restricted_index=0;
|
|
list_restricted_invert=invert;
|
|
generate_restricted(list_restricted_callback,classes,restriction_type);
|
|
return ret;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE NRPerm<T>::rank() const
|
|
{
|
|
int c,i,k;
|
|
PERM_RANK_TYPE r;
|
|
int n= this->size();
|
|
|
|
r=0;
|
|
for (k=1; k<=n; ++k)
|
|
{
|
|
T l=(*this)[k];
|
|
c=0;
|
|
for(i=k+1;i<=n;++i) if((*this)[i]<l) ++c;
|
|
r+= c;
|
|
i=n-k;
|
|
if(i) r*= i;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
NRVec_from1<T> NRPerm<T>::inversions(const int type, PERM_RANK_TYPE *prank) const
|
|
{
|
|
PERM_RANK_TYPE s=0;
|
|
int n=this->size();
|
|
int j,k;
|
|
T l;
|
|
|
|
NRVec_from1<T> i(n);
|
|
i.clear();
|
|
|
|
switch(type) {
|
|
case 3: /*number of elements right from p[j] smaller < p[j]*/
|
|
for(j=1;j<n;++j) /*number of elements right from j smaller <j*/
|
|
{
|
|
l=(*this)[j];
|
|
for(k=n;k>j;--k)
|
|
{
|
|
if((*this)[k]<l) ++i[j];
|
|
}
|
|
}
|
|
break;
|
|
case 2: /*number of elements left from p[j] bigger >p[j]*/
|
|
for(j=2;j<=n;++j) /*number of elements left from j bigger >j*/
|
|
{
|
|
l=(*this)[j];
|
|
for(k=1;k<j;++k)
|
|
{
|
|
if((*this)[k]>l) ++i[j];
|
|
}
|
|
}
|
|
break;
|
|
case 1:
|
|
for(j=1;j<=n;++j) /*number of elements right from j smaller <j*/
|
|
{
|
|
for(k=n;k>=1;--k)
|
|
{
|
|
if((*this)[k]==j) break;
|
|
if((*this)[k]<j) ++i[j];
|
|
}
|
|
}
|
|
break;
|
|
case 0:
|
|
for(j=1;j<=n;++j) /*number of elements left from j bigger >j*/
|
|
{
|
|
for(k=1;k<=n;++k)
|
|
{
|
|
if((*this)[k]==j) break;
|
|
if((*this)[k]>j) ++i[j];
|
|
}
|
|
}
|
|
break;
|
|
default: laerror("illegal type in inversions");
|
|
|
|
if(prank)
|
|
{
|
|
if(type!=3) laerror("rank can be computed from inversions only for type 3");
|
|
l=1;
|
|
for(j=1;j<n;++j)
|
|
{
|
|
l*= j;
|
|
*prank += l*i[n-j];
|
|
}
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
template <typename T>
|
|
NRPerm<T>::NRPerm(const int type, const NRVec_from1<T> &i)
|
|
{
|
|
int n=i.size();
|
|
this->resize(n);
|
|
|
|
int k,l;
|
|
T j;
|
|
|
|
switch(type) {
|
|
case 2:
|
|
case 1:
|
|
for(l=0,j=1; j<=n; ++j,++l)
|
|
{
|
|
/*shift left and place*/
|
|
for(k=n-l+1; k<=n-i[j]; ++k) (*this)[k-1]=(*this)[k];
|
|
(*this)[n-i[j]]=j;
|
|
}
|
|
break;
|
|
case 3:
|
|
case 0:
|
|
for(l=0,j=n; j>0; --j,++l)
|
|
{
|
|
/*shift right and place*/
|
|
for(k=l; k>=i[j]+1; --k) (*this)[k+1]=(*this)[k];
|
|
(*this)[i[j]+1]=j;
|
|
}
|
|
break;
|
|
default: laerror("illegal type in nrperm from inversions");
|
|
}
|
|
|
|
if(type>=2) (*this) = this->inverse();
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
NRPerm<T>::NRPerm(const int n, const PERM_RANK_TYPE rank)
|
|
{
|
|
this->resize(n);
|
|
NRVec_from1<T> inv(n) ;
|
|
#ifdef DEBUG
|
|
if(rank>=factorial(n)) laerror("illegal rank for this n");
|
|
#endif
|
|
inv[n]=0;
|
|
int k;
|
|
PERM_RANK_TYPE r=rank;
|
|
for(k=n-1; k>=0; --k)
|
|
{
|
|
PERM_RANK_TYPE t;
|
|
t=factorial(k);
|
|
inv[n-k]=r/t;
|
|
r=r%t;
|
|
}
|
|
|
|
*this = NRPerm(3,inv);
|
|
}
|
|
|
|
#define MAXFACT 20
|
|
PERM_RANK_TYPE factorial(const int n)
|
|
{
|
|
static int ntop=20;
|
|
static PERM_RANK_TYPE a[MAXFACT+1]={1,1,2,6,24,120,720,5040,
|
|
40320,
|
|
362880,
|
|
3628800,
|
|
39916800ULL,
|
|
479001600ULL,
|
|
6227020800ULL,
|
|
87178291200ULL,
|
|
1307674368000ULL,
|
|
20922789888000ULL,
|
|
355687428096000ULL,
|
|
6402373705728000ULL,
|
|
121645100408832000ULL,
|
|
2432902008176640000ULL};
|
|
|
|
int j;
|
|
if (n < 0) laerror("negative argument of factorial");
|
|
if (n > MAXFACT) laerror("overflow in factorial");
|
|
while (ntop<n) {
|
|
j=ntop++;
|
|
a[ntop]=a[j]*ntop;
|
|
}
|
|
return a[n];
|
|
}
|
|
|
|
|
|
#define MAXBINOM 100
|
|
#define ibidxmaxeven(n) ((n-2)*(n-2)/4)
|
|
#define ibidx(n,k) (k-2+(n&1?(n-3)*(n-3)/4:(n/2-1)*(n/2-2)))
|
|
PERM_RANK_TYPE binom(int n, int k)
|
|
{
|
|
PERM_RANK_TYPE p,value;
|
|
register int d;
|
|
static PERM_RANK_TYPE ibitab[ibidxmaxeven(MAXBINOM)]= /*only nontrivial are stored,
|
|
zero initialization by compiler assumed*/
|
|
{
|
|
6,
|
|
10,
|
|
15,20,
|
|
21,35,
|
|
28,56,70
|
|
};
|
|
|
|
|
|
if(k>n||k<0) return(0);
|
|
if(k>n/2) k=n-k;
|
|
if(k==0) return(1);
|
|
if(k==1) return(n);
|
|
int ind=0;
|
|
if(n<=MAXBINOM)
|
|
{
|
|
ind=ibidx(n,k);
|
|
if (ibitab[ind]) return ibitab[ind];
|
|
}
|
|
/* nonrecurent method used anyway */
|
|
d=n-k;
|
|
p=1;
|
|
for(;n>d;n--) p *= n;
|
|
value=p/factorial(k);
|
|
if(n<=MAXBINOM) ibitab[ind]=value;
|
|
return value;
|
|
}
|
|
#undef ibidx
|
|
#undef ibidxmaxeven
|
|
#undef MAXBINOM
|
|
|
|
|
|
template <typename T, typename R>
|
|
PermutationAlgebra<T,R> PermutationAlgebra<T,R>::operator&(const PermutationAlgebra<T,R> &rhs) const
|
|
{
|
|
PermutationAlgebra<T,R> res(this->size()*rhs.size());
|
|
for(int i=0; i<this->size(); ++i)
|
|
for(int j=0; j<rhs.size(); ++j)
|
|
res[i*rhs.size()+j] = (*this)[i]&rhs[j];
|
|
return res;
|
|
}
|
|
|
|
template <typename T, typename R>
|
|
PermutationAlgebra<T,R> PermutationAlgebra<T,R>::operator|(const PermutationAlgebra<T,R> &rhs) const
|
|
{
|
|
PermutationAlgebra<T,R> res(this->size()*rhs.size());
|
|
for(int i=0; i<this->size(); ++i)
|
|
for(int j=0; j<rhs.size(); ++j)
|
|
res[i*rhs.size()+j] = (*this)[i]|rhs[j];
|
|
return res;
|
|
}
|
|
|
|
template <typename T, typename R>
|
|
PermutationAlgebra<T,R> PermutationAlgebra<T,R>::operator*(const PermutationAlgebra<T,R> &rhs) const
|
|
{
|
|
if(this->size()>0 && rhs.size()>0 && (*this)[0].perm.size()!=rhs[0].perm.size()) laerror("permutation sizes do not match");
|
|
PermutationAlgebra<T,R> res(this->size()*rhs.size());
|
|
for(int i=0; i<this->size(); ++i)
|
|
for(int j=0; j<rhs.size(); ++j)
|
|
res[i*rhs.size()+j] = (*this)[i]*rhs[j];
|
|
res.simplify();
|
|
return res;
|
|
}
|
|
|
|
template <typename T, typename R>
|
|
PermutationAlgebra<T,R> PermutationAlgebra<T,R>::operator+(const PermutationAlgebra<T,R> &rhs) const
|
|
{
|
|
if(this->size()>0 && rhs.size()>0 && (*this)[0].perm.size()!=rhs[0].perm.size()) laerror("permutation sizes do not match");
|
|
PermutationAlgebra<T,R> res=this->concat(rhs);
|
|
res.simplify();
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
CyclePerm<T>:: CyclePerm(const NRPerm<T> &p)
|
|
{
|
|
#ifdef DEBUG
|
|
if(!p.is_valid()) laerror("invalid permutation");
|
|
#endif
|
|
T n=p.size();
|
|
NRVec_from1<T> used((T)0,n),tmp(n);
|
|
T firstunused=1;
|
|
T currentcycle=0;
|
|
std::list<NRVec_from1<T> > cyclelist;
|
|
do
|
|
{
|
|
//find a cycle starting with first unused element
|
|
T cyclelength=0;
|
|
T next = firstunused;
|
|
do
|
|
{
|
|
++cyclelength;
|
|
used[next]=1;
|
|
tmp[cyclelength] = next;
|
|
next = p[next];
|
|
}
|
|
while(used[next]==0);
|
|
if(cyclelength>1) //nontrivial cycle
|
|
{
|
|
NRVec_from1<T> cycle(&tmp[1],cyclelength);
|
|
cyclelist.push_front(cycle);
|
|
++currentcycle;
|
|
}
|
|
while(used[firstunused]) {++firstunused; if(firstunused>n) break;} //find next unused element
|
|
}
|
|
while(firstunused<=n);
|
|
//convert list to NRVec
|
|
this->resize(currentcycle);
|
|
T i=1;
|
|
for(typename std::list<NRVec_from1<T> >::iterator l=cyclelist.begin(); l!=cyclelist.end(); ++l) (*this)[i++] = *l;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
bool CyclePerm<T>::is_valid() const
|
|
{
|
|
for(T i=1; i<=this->size(); ++i)
|
|
{
|
|
T n=(*this)[i].size();
|
|
if(n<=0) return false;
|
|
for(T j=1; j<=n; ++j)
|
|
{
|
|
T x=(*this)[i][j];
|
|
if(x<=0) return false;
|
|
|
|
//now check for illegal duplicity of numbers withis a cycle or across cycles
|
|
for(T ii=i; ii<=this->size(); ++ii)
|
|
{
|
|
T nn=(*this)[ii].size();
|
|
for(T jj=(ii==i?j+1:1); jj<=nn; ++jj)
|
|
{
|
|
T xx=(*this)[ii][jj];
|
|
if(x==xx) return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool CyclePerm<T>::is_identity() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid cycleperm");
|
|
#endif
|
|
for(T i=1; i<=this->size(); ++i) if((*this)[i].size()>1) return false; //at least one nontrivial cycle
|
|
return true;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
CyclePerm<T> CyclePerm<T>::inverse() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid cycleperm");
|
|
#endif
|
|
|
|
CyclePerm<T> r;
|
|
T ncycles=this->size();
|
|
r.resize(ncycles);
|
|
for(T i=1; i<=ncycles; ++i)
|
|
{
|
|
T length=(*this)[i].size();
|
|
r[i].resize(length);
|
|
//reverse order in cycles (does not matter in cycle lengths 1 and 2 anyway)
|
|
for(T j=1; j<=length; ++j) r[i][j] = (*this)[i][length-j+1];
|
|
}
|
|
return r;
|
|
}
|
|
|
|
//multiplication via NRPerm - could there be a more efficient direct algorithm?
|
|
template <typename T>
|
|
CyclePerm<T> CyclePerm<T>::operator*(const CyclePerm &q) const
|
|
{
|
|
int m=this->max();
|
|
int mm=q.max();
|
|
if(mm>m) mm=m;
|
|
NRPerm<T> qq(q,m);
|
|
NRPerm<T> pp(*this,m);
|
|
NRPerm<T> rr=pp*qq;
|
|
return CyclePerm<T>(rr);
|
|
}
|
|
|
|
|
|
//mixed type multiplications
|
|
template <typename T>
|
|
NRPerm<T> NRPerm<T>::operator*(const CyclePerm<T> &r) const
|
|
{
|
|
NRPerm<T> rr(r,this->size());
|
|
return *this * rr;
|
|
}
|
|
|
|
template <typename T>
|
|
NRPerm<T> CyclePerm<T>::operator*(const NRPerm<T> &r) const
|
|
{
|
|
NRPerm<T> tt(*this,r.size());
|
|
return tt*r;
|
|
}
|
|
|
|
template <typename T>
|
|
void CyclePerm<T>::simplify(bool keep1)
|
|
{
|
|
int j=0;
|
|
for(int i=1; i<=this->size(); ++i)
|
|
{
|
|
int il= (*this)[i].size();
|
|
if(keep1 && il>0 || il>1 )
|
|
{
|
|
++j;
|
|
if(j!=i) (*this)[j] = (*this)[i]; //keep this
|
|
}
|
|
}
|
|
this->resize(j,true);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
int CyclePerm<T>::parity() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid cycleperm");
|
|
#endif
|
|
int n_even_cycles=0;
|
|
T ncycles=this->size();
|
|
for(T i=1; i<=ncycles; ++i)
|
|
{
|
|
T length=(*this)[i].size();
|
|
if((length&1)==0) ++n_even_cycles;
|
|
}
|
|
return (n_even_cycles&1)?-1:1;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE CyclePerm<T>::order() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid cycleperm");
|
|
#endif
|
|
PERM_RANK_TYPE r=1;
|
|
T ncycles=this->size();
|
|
for(T i=1; i<=ncycles; ++i)
|
|
{
|
|
T length=(*this)[i].size();
|
|
r=lcm(r,(PERM_RANK_TYPE)length);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
CompressedPartition<T> CyclePerm<T>::cycles(const T n) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid cycleperm");
|
|
#endif
|
|
CompressedPartition<T> r(n); r.clear();
|
|
T ncycles=this->size();
|
|
for(T i=1; i<=ncycles; ++i)
|
|
{
|
|
T length=(*this)[i].size();
|
|
if(length<=0||length>n) laerror("unexpected cycle length in permutation");
|
|
r[length]++;
|
|
}
|
|
//fill in trivial cycles of length one
|
|
r[1] += n - r.sum();
|
|
if(r[1]<0) laerror("inconsistent cycle lengths in CyclePerm::cycles");
|
|
return r;
|
|
}
|
|
|
|
|
|
//auxiliary function for input of a permutation in cycle format
|
|
//returns pointer after closing bracket or NULL if no cycle found
|
|
//or input error
|
|
template <typename T>
|
|
const char *read1cycle(NRVec_from1<T> &c, const char *p)
|
|
{
|
|
if(*p==0) return NULL;
|
|
const char *openbracket = strchr(p,'(');
|
|
if(!openbracket) return NULL;
|
|
const char *closebracket = strchr(openbracket+1,')');
|
|
if(!closebracket) return NULL;
|
|
const char *s = openbracket+1;
|
|
int r;
|
|
int length=0;
|
|
std::list<T> cycle;
|
|
do {
|
|
long int tmp;
|
|
int nchar;
|
|
if(*s==',') ++s;
|
|
r = sscanf(s,"%ld%n",&tmp,&nchar);
|
|
if(r==1)
|
|
{
|
|
++length;
|
|
s += nchar;
|
|
cycle.push_back((T)tmp);
|
|
}
|
|
}
|
|
while(r==1 && s<closebracket);
|
|
|
|
//make vector from list
|
|
c.resize(length);
|
|
int i=0;
|
|
for(typename std::list<T>::iterator l=cycle.begin(); l!=cycle.end(); ++l) c[++i] = *l;
|
|
|
|
return closebracket+1;
|
|
}
|
|
|
|
template <typename T>
|
|
void CyclePerm<T>::readfrom(const std::string &line)
|
|
{
|
|
const char *p=line.c_str();
|
|
std::list<NRVec<T> > cyclelist;
|
|
int ncycles=0;
|
|
int count=0;
|
|
NRVec_from1<T> c;
|
|
while(p=read1cycle(c,p))
|
|
{
|
|
//printf("cycle %d of length %d read\n",count,c.size());
|
|
if(c.size()!=0) //store a nonempty cycle
|
|
{
|
|
++count;
|
|
cyclelist.push_back(c);
|
|
}
|
|
}
|
|
|
|
|
|
//convert list to vector
|
|
this->resize(count);
|
|
T i=0;
|
|
for(typename std::list<NRVec<T> >::iterator l=cyclelist.begin(); l!=cyclelist.end(); ++l) (*this)[++i] = *l;
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("readfrom received input of invalid CyclePerm");
|
|
#endif
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
std::istream & operator>>(std::istream &s, CyclePerm<T> &x)
|
|
{
|
|
std::string l;
|
|
getline(s,l);
|
|
x.readfrom(l);
|
|
return s;
|
|
}
|
|
|
|
template <typename T>
|
|
std::ostream & operator<<(std::ostream &s, const CyclePerm<T> &x)
|
|
{
|
|
for(int i=1; i<=x.size(); ++i)
|
|
{
|
|
s<<"(";
|
|
for(int j=1; j<=x[i].size(); ++j)
|
|
{
|
|
s<<x[i][j];
|
|
if(j<x[i].size()) s<<" ";
|
|
}
|
|
s<<")";
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
CyclePerm<T> CyclePerm<T>::pow(const int n, const bool keep1) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("power of invalid permutation");
|
|
#endif
|
|
CyclePerm<T> r;
|
|
if(n==0) {r.identity(); return r;}
|
|
|
|
//probably negative n will work automatically using the modulo approach
|
|
std::list<NRVec_from1<T> > cyclelist;
|
|
T currentcycle=0;
|
|
|
|
//go through all our cycles and compute power of each cycle separately
|
|
for(int i=1; i<=this->size(); ++i)
|
|
{
|
|
int cyclesize = (*this)[i].size();
|
|
if(cyclesize>0 && keep1 || cyclesize>1)
|
|
{
|
|
int modulo = n%cyclesize;
|
|
if(modulo<0) modulo += cyclesize;
|
|
if(modulo==0)
|
|
{
|
|
if(keep1) //keep cycles of length 1 to keep info about the size of the permutation
|
|
{
|
|
for(int j=1; j<=cyclesize; ++j) {NRVec_from1<T> c(1); c[1] = (*this)[i][j]; ++currentcycle; cyclelist.push_back(c);}
|
|
}
|
|
}
|
|
else //the nontrivial case
|
|
{
|
|
int nsplit=gcd(modulo,cyclesize);
|
|
int splitsize=cyclesize/nsplit;
|
|
for(int j=0; j<nsplit; ++j) //loop over split cycles
|
|
{
|
|
NRVec_from1<T> c(splitsize);
|
|
for(int k=1; k<=splitsize; ++k) //fill in the cycle
|
|
{
|
|
c[k] = (*this)[i][((k-1)*modulo)%cyclesize + 1 + j];
|
|
}
|
|
++currentcycle; cyclelist.push_back(c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//convert list to NRVec
|
|
r.resize(currentcycle);
|
|
int i=1;
|
|
for(typename std::list<NRVec_from1<T> >::iterator l=cyclelist.begin(); l!=cyclelist.end(); ++l) r[i++] = *l;
|
|
return r;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE CompressedPartition<T>::Sn_class_size() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid partition");
|
|
#endif
|
|
int n=this->size();
|
|
PERM_RANK_TYPE r=factorial(n);
|
|
for(int i=1; i<=n; ++i)
|
|
{
|
|
T m=(*this)[i];
|
|
if(i>1 && m>0) r/=longpow(i,m);
|
|
if(m>1) r/=factorial(m);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE Partition<T>::Sn_irrep_dim() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid partition");
|
|
#endif
|
|
int n=this->size();
|
|
PERM_RANK_TYPE prod=1;
|
|
Partition<T> adj=this->adjoint();
|
|
//hook length formula
|
|
for(int i=1; i<=adj[1]; ++i) //rows
|
|
for(int j=1; j<= (*this)[i]; ++j) //cols
|
|
prod *= (*this)[i]-j+adj[j]-i+1;
|
|
|
|
return factorial(n)/prod;
|
|
}
|
|
|
|
|
|
/*hammermesh eq 10-25, highest weight == generalized partition of r into n parts*/
|
|
template <typename T>
|
|
PERM_RANK_TYPE Partition<T>::Un_irrep_dim(const int n) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid partition");
|
|
#endif
|
|
if(nparts()>n) return 0; //too antisymmetric partition
|
|
int i,j;
|
|
double prod;
|
|
int r=this->size();
|
|
NRVec_from1<int> p(n);
|
|
for(i=1;i<=n;i++) p[i]= (i<=r?(*this)[i]:0)+n-i;
|
|
prod=1;
|
|
for(j=n;j>=2;j--)
|
|
{
|
|
for(i=1;i<j;i++) prod*= (p[i]-p[j]);
|
|
prod /= factorial(j-1); //can be fractional in the intermediate steps - needs double
|
|
}
|
|
|
|
return (PERM_RANK_TYPE) (prod+0.2);
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
Partition<T> Partition<T>::adjoint() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid partition");
|
|
#endif
|
|
int n=this->size();
|
|
Partition<T> r(n);
|
|
r.clear();
|
|
for(int i=1;i<=n;++i)
|
|
{
|
|
int j;
|
|
for(j=1; j<=n&&(*this)[j]>=i; ++j);
|
|
r[i]=j-1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
template <typename T>
|
|
Partition<T>::Partition(const YoungTableaux<T> &x)
|
|
{
|
|
#ifdef DEBUG
|
|
if(!x.is_valid()) laerror("operation with an invalid tableaux");
|
|
#endif
|
|
int nparts=x.size();
|
|
int n=0;
|
|
for(int i=1; i<=nparts; ++i) n+= x[i].size();
|
|
this->resize(n);
|
|
this->clear();
|
|
for(int i=1; i<=nparts; ++i) (*this)[i]=x[i].size();
|
|
}
|
|
|
|
PERM_RANK_TYPE longpow(PERM_RANK_TYPE x, int i)
|
|
{
|
|
if(i<0) return 0;
|
|
PERM_RANK_TYPE y=1;
|
|
do
|
|
{
|
|
if(i&1) y *= x;
|
|
i >>= 1;
|
|
if(i) x *= x;
|
|
}
|
|
while(i);
|
|
return y ;
|
|
}
|
|
|
|
|
|
//aux for the recursive procedure
|
|
static PERM_RANK_TYPE partitioncount;
|
|
template <typename T> static void (*_pcallback)(const Partition<T>&);
|
|
static int partitiontyp;
|
|
static int partitiontypabs;
|
|
template <typename T> static Partition<T> *partition;
|
|
|
|
template <typename T>
|
|
void partgen(int remain, int pos)
|
|
{
|
|
int hi,lo;
|
|
if(remain==0) {++partitioncount; if(_pcallback<T>) (*_pcallback<T>)(*partition<T>); return;}
|
|
if(partitiontyp) lo=(remain+partitiontypabs-pos)/(partitiontypabs-pos+1); else lo=1;
|
|
hi=remain;
|
|
if(partitiontyp>0) hi -= partitiontypabs-pos;
|
|
if(pos>1 && (*partition<T>)[pos-1] < hi) hi= (*partition<T>)[pos-1];
|
|
for((*partition<T>)[pos]=hi; (*partition<T>)[pos]>=lo; --(*partition<T>)[pos]) partgen<T>(remain-(*partition<T>)[pos],pos+1);
|
|
(*partition<T>)[pos]=0;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE Partition<T>::generate_all(void (*callback)(const Partition<T>&), int nparts)
|
|
{
|
|
int n=this->size();
|
|
if(n==0) return 0;
|
|
if(nparts>0 && n<nparts) return 0;
|
|
|
|
this->copyonwrite();
|
|
this->clear();
|
|
partitioncount=0;
|
|
_pcallback<T> =callback;
|
|
partitiontyp=nparts;
|
|
partition<T> = this;
|
|
partitiontypabs= nparts>=0?nparts:-nparts;
|
|
partgen<T>(n,1);
|
|
return partitioncount;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
std::ostream & operator<<(std::ostream &s, const CompressedPartition<T> &x)
|
|
{
|
|
int n=x.size();
|
|
T sum=0;
|
|
for(int i=n; i>0;--i)
|
|
if(x[i])
|
|
{
|
|
s<<i;
|
|
if(x[i]>1) s<<'^'<<x[i];
|
|
sum+= i*x[i];
|
|
if(sum<n) s<<',';
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
int Partition<T>::parity() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid partition");
|
|
#endif
|
|
T n_even_cycles=0;
|
|
T n=this->size();
|
|
for(T i=1; i<=n; ++i)
|
|
{
|
|
if((*this)[i]!=0 && ((*this)[i] &1 ) ==0) ++n_even_cycles;
|
|
}
|
|
return (n_even_cycles&1)?-1:1;
|
|
}
|
|
|
|
template <typename T>
|
|
int CompressedPartition<T>::parity() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("operation with an invalid partition");
|
|
#endif
|
|
T n_even_cycles=0;
|
|
T n=this->size();
|
|
for(T i=2; i<=n; i+=2) n_even_cycles += (*this)[i];
|
|
return (n_even_cycles&1)?-1:1;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*see M. Aigner - Combinatorial Theory - number of partitions of number n*/
|
|
#define MAXPART 260
|
|
#define MIN(x,y) ((x)<(y)?(x):(y))
|
|
/* here even few more columns more could be saved, and also the property part(n,k>=n/2)=part(n-k) could be used */
|
|
#define partind(n,k) (((n)-3)*((n)-2)/2+(k)-2)
|
|
#define getpart(n,k) (((k)>(n) || (k)<=0 )?0:(((k)==(n) || (k)==1)?1:(part[partind((n),(k))])))
|
|
|
|
PERM_RANK_TYPE partitions(int n, int k)
|
|
{
|
|
static PERM_RANK_TYPE part[partind(MAXPART+1,1)]={1};
|
|
static PERM_RANK_TYPE npart[MAXPART+1]={0,1,2,3};
|
|
static int ntop=3;
|
|
int i,j,l;
|
|
PERM_RANK_TYPE s;
|
|
|
|
if( n<=0 || k<-1 ) laerror("Partitions are available only for positive numbers");
|
|
if(k== -1) /* total partitions */
|
|
{
|
|
if(n>ntop)(void)partitions(n,3); /* make sure that table is calculated */
|
|
return npart[n];
|
|
}
|
|
|
|
if(n==k||k==1) return 1;
|
|
if(k==0||k>n) return 0;
|
|
if(k==2) return n/2;
|
|
if(n>MAXPART && k>=n/2) return(partitions(n-k,-1));
|
|
if( n>MAXPART) laerror("sorry, too big argument to partition enumerator");
|
|
if(n<=ntop) return(getpart(n,k));
|
|
|
|
/*calculate, if necessary, few next rows*/
|
|
for(i=4;i<=n;i++)
|
|
{
|
|
npart[i]=2;
|
|
for(j=2;j<=i-1;j++)
|
|
{
|
|
s=0;
|
|
for(l=1; l<=MIN(i-j,j);l++) s+=getpart(i-j,l);
|
|
npart[i]+=(part[partind(i,j)]=s);
|
|
}
|
|
}
|
|
|
|
ntop=n;
|
|
return(part[partind(n,k)]);
|
|
|
|
}
|
|
|
|
#undef getpart
|
|
#undef partind
|
|
#undef MIN
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
YoungTableaux<T>::YoungTableaux(const Partition<T> &frame)
|
|
: NRVec_from1<NRVec_from1<T> >()
|
|
{
|
|
#ifdef DEBUG
|
|
if(!frame.is_valid()) laerror("invalid partition used as young frame");
|
|
#endif
|
|
int nlines=frame.nparts();
|
|
this->resize(nlines);
|
|
for(int i=1; i<=nlines; ++i) {(*this)[i].resize(frame[i]); (*this)[i].clear();}
|
|
}
|
|
|
|
template <typename T>
|
|
bool YoungTableaux<T>::is_valid() const
|
|
{
|
|
int nrows=this->size();
|
|
for(int i=1; i<=nrows; ++i)
|
|
{
|
|
if((*this)[i].size()<=0) return false;
|
|
if(i>1 && (*this)[i].size()> (*this)[i-1].size()) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T YoungTableaux<T>::sum() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!is_valid()) laerror("invalid young frame");
|
|
#endif
|
|
int sum=0;
|
|
int nrows=this->size();
|
|
for(int i=1; i<=nrows; ++i) sum += (*this)[i].size();
|
|
return sum;
|
|
}
|
|
|
|
template <typename T>
|
|
T YoungTableaux<T>::max() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!is_valid()) laerror("invalid young frame");
|
|
#endif
|
|
int m= -1;
|
|
int nrows=this->size();
|
|
for(int i=1; i<=nrows; ++i) for(int j=1; j<= (*this)[i].size(); ++j) if((*this)[i][j]>m) m=(*this)[i][j];
|
|
return m;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
bool YoungTableaux<T>::is_standard() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!is_valid()) laerror("invalid young frame");
|
|
#endif
|
|
int nrows=this->size();
|
|
//check numbers monotonous in rows and columns
|
|
for(int i=1; i<=nrows; ++i)
|
|
{
|
|
for(int j=1; j<=(*this)[i].size(); ++j)
|
|
{
|
|
if(j>1 && (*this)[i][j] < (*this)[i][j-1]) return false;
|
|
if(i>1 && (*this)[i][j] < (*this)[i-1][j]) return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
std::ostream & operator<<(std::ostream &s, const YoungTableaux<T> &x)
|
|
{
|
|
int nrows=x.size();
|
|
for(int i=1; i<=nrows; ++i)
|
|
{
|
|
for(int j=1; j<=x[i].size(); ++j)
|
|
{
|
|
s.width(4);
|
|
s<<x[i][j]<<' ';
|
|
}
|
|
s<<std::endl;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
NRVec_from1<T> YoungTableaux<T>::yamanouchi() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!is_valid()) laerror("invalid young frame");
|
|
#endif
|
|
int n=sum();
|
|
NRVec_from1<T> yama(n);
|
|
int i,j;
|
|
for (i=1;i<=this->size();i++) for (j=1;j<=(*this)[i].size();j++) yama[n-(*this)[i][j]+1]=i;
|
|
return yama;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T YoungTableaux<T>::character_contribution(int ncyc) const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!is_valid()) laerror("invalid young frame");
|
|
if(!is_standard()) laerror("nonstandardly filled young frame");
|
|
#endif
|
|
|
|
|
|
if(!ncyc) ncyc=max(); //number of types of applied points
|
|
NRVec_from1<T> onxlines((T)0,ncyc);
|
|
|
|
for(int i=1;i<=(*this).size();i++) //rows
|
|
{
|
|
NRVec_from1<T> wasfound((T)0,ncyc);
|
|
for(int j=1;j<=(*this)[i].size();j++) //columns
|
|
{
|
|
T k = (*this)[i][j];
|
|
onxlines[k] += (1-wasfound[k]);
|
|
wasfound[k]=1;
|
|
}
|
|
}
|
|
|
|
/*now sum the number of odd applications for all cycles*/
|
|
T contrib=0;
|
|
for(int i=1;i<=ncyc;i++) contrib += ((onxlines[i]&1)^1);
|
|
|
|
return (1-2*(contrib&1)); //add it to the character +1 for even no. of odd apl., -1 for odd no. of odd apl.
|
|
}
|
|
|
|
static bool _callyoung;
|
|
|
|
template <typename T>
|
|
static void (*_young_callback)(const YoungTableaux<T>&);
|
|
|
|
template <typename T>
|
|
static T _character;
|
|
|
|
template <typename T>
|
|
static YoungTableaux<T> *_tchi;
|
|
|
|
template <typename T>
|
|
static T _nowapplying;
|
|
|
|
template <typename T>
|
|
static T _ncycles;
|
|
|
|
template <typename T>
|
|
static NRVec_from1<T> *_aplnumbers;
|
|
|
|
template <typename T>
|
|
static NRVec_from1<T> *_oclin;
|
|
|
|
template <typename T>
|
|
static NRVec_from1<T> *_occol;
|
|
|
|
template <typename T>
|
|
static T _nn;
|
|
|
|
template <typename T>
|
|
static inline T mymin(T i,T j)
|
|
{
|
|
return(i<j?i:j);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void placedot(T l, T c)
|
|
{
|
|
(*_tchi<T>)[l][c]= _nowapplying<T>;
|
|
(*_oclin<T>)[l]++;
|
|
(*_occol<T>)[c]++;
|
|
}
|
|
|
|
//forward declaration for recursion
|
|
template <typename T>
|
|
extern void nextapply(T ncyc);
|
|
|
|
template <typename T>
|
|
void regulapply(T ncyc, T napl) //ncyc is number of cycles; napl is the size of now processed cycle
|
|
{
|
|
|
|
/*the main idea is that only the first point of each set can be placed
|
|
in several independent ways; the other points (if present) must be placed in
|
|
a given fixed way depending on the first one; than it is also necessary to test
|
|
if the application was successfull at all and return back or call nextapply, respectively*/
|
|
|
|
Partition<T> usedcols(_nn<T>),usedlines(_nn<T>); //stores the positions where points were placed, is necessary for later cleanup
|
|
|
|
/*try to place first point*/
|
|
for(usedlines[1]=mymin((T)_tchi<T>->nrows(),(*_occol<T>)[1]+napl); usedlines[1]>0; usedlines[1]--)
|
|
{
|
|
if((*_oclin<T>)[usedlines[1]]<=(*_tchi<T>)[usedlines[1]].size()) /*line is not fully occupied*/
|
|
{
|
|
int i;
|
|
|
|
usedcols[1]= (*_oclin<T>)[usedlines[1]]; /*in the line there is only one possible column*/
|
|
/* place first point */
|
|
placedot(usedlines[1],usedcols[1]);
|
|
|
|
for(i=2;i<=napl;i++) usedlines[i]=usedcols[i]= 0; /* flag for cleaning that they were not placed*/
|
|
/*now place other ones, if not possible go to irregular*/
|
|
for(i=2;i<=napl;i++)
|
|
{
|
|
T thisrow;
|
|
thisrow=usedlines[i-1];
|
|
if (thisrow==1)
|
|
{
|
|
if((*_oclin<T>)[1]> (*_tchi<T>)[1].size()) goto irregular; /*no place remained*/
|
|
placedot((usedlines[i]=1),(usedcols[i]= (*_oclin<T>)[1]));
|
|
}
|
|
else
|
|
{
|
|
T thiscol;
|
|
thiscol=usedcols[i-1];
|
|
if(!(*_tchi<T>)[thisrow-1][thiscol]) /*the box at the top of last placed is free*/
|
|
{
|
|
placedot((usedlines[i]=thisrow-1),(usedcols[i]=thiscol));
|
|
}
|
|
else if((*_oclin<T>)[thisrow] <= (*_tchi<T>)[thisrow].size()) /*the position at the right exists*/
|
|
{
|
|
#ifdef DEBUG
|
|
if((*_tchi<T>)[thisrow][thiscol+1]) laerror("error in regulapply!!!");
|
|
#endif
|
|
placedot((usedlines[i]=thisrow),(usedcols[i]=thiscol+1));
|
|
}
|
|
else goto irregular;
|
|
}
|
|
}
|
|
|
|
/*test if it is regular*/
|
|
for(i=1;i<=napl;i++)
|
|
{
|
|
/*test if the box left and up from actual position is full (provided it exists)*/
|
|
if(usedlines[i]>1) if(!(*_tchi<T>)[usedlines[i]-1][usedcols[i]]) goto irregular;
|
|
if(usedcols[i]>1) if(!(*_tchi<T>)[usedlines[i]][usedcols[i]-1]) goto irregular;
|
|
}
|
|
|
|
nextapply(ncyc+1);
|
|
|
|
irregular:
|
|
|
|
/* clear all points */
|
|
for(i=napl;i>0;i--)
|
|
if(usedlines[i]>0 && usedcols[i]>0)
|
|
{
|
|
(*_tchi<T>)[usedlines[i]][usedcols[i]]=0;
|
|
(*_oclin<T>)[usedlines[i]]--;
|
|
(*_occol<T>)[usedcols[i]]--;
|
|
}
|
|
|
|
}
|
|
/*end of loop for nonfull lines of first point*/
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void nextapply(T ncyc)
|
|
{
|
|
_nowapplying<T>++;
|
|
if(ncyc> _ncycles<T>)
|
|
{
|
|
if(_callyoung)
|
|
{
|
|
if(_young_callback<T>) _young_callback<T>(*_tchi<T>);
|
|
_character<T> ++;
|
|
}
|
|
else _character<T> += _tchi<T>->character_contribution(_ncycles<T>);
|
|
}
|
|
else regulapply(ncyc,(*_aplnumbers<T>)[ncyc]);
|
|
_nowapplying<T>--;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
T Sn_character(const Partition<T> &irrep, const Partition<T> &cclass)
|
|
{
|
|
#ifdef DEBUG
|
|
if(!irrep.is_valid()||!cclass.is_valid()) laerror("invalid input to Sn_character");
|
|
#endif
|
|
|
|
//prepare numbers to apply to the tableaux
|
|
int n=irrep.sum();
|
|
if(cclass.sum()!=n) laerror("irrep and class partitions do not match");
|
|
T ncycles=cclass.nparts();
|
|
|
|
NRVec_from1<T> aplnumbers(ncycles);
|
|
CompressedPartition<T> ccclass(cclass);
|
|
T k=0;
|
|
for(int j=n;j>0;j--) for(T l=1;l<=ccclass[j];l++) aplnumbers[++k]=j;
|
|
if(aplnumbers[k]==1)
|
|
{
|
|
/*rotate to the right*/
|
|
for(T l=k;l>1;l--) aplnumbers[l]=aplnumbers[l-1];
|
|
aplnumbers[1]=1;
|
|
}
|
|
|
|
//applying aplnumbers[i] pieces of "i"
|
|
//std::cout<<"TEST aplnumbers "<<aplnumbers<<std::endl;
|
|
|
|
//prepare static variables for the recursive procedure and generate all regular applications
|
|
YoungTableaux<T> y(irrep);
|
|
//y.clear(); //already done in the constructor
|
|
_callyoung=false;
|
|
_ncycles<T> =ncycles;
|
|
_tchi<T> = &y;
|
|
_nn<T> = n;
|
|
_nowapplying<T> =0;
|
|
_aplnumbers<T> = &aplnumbers;
|
|
_character<T> =0;
|
|
Partition<T> oclin(n);
|
|
_oclin<T> = &oclin;
|
|
Partition<T> occol(n);
|
|
_occol<T> = &occol;
|
|
for(int i=1; i<=n; ++i) (*_oclin<T>)[i]= (*_occol<T>)[i]= 1;
|
|
nextapply<T>(1);
|
|
|
|
return _character<T>;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
PERM_RANK_TYPE YoungTableaux<T>::generate_all_standard(void (*callback)(const YoungTableaux<T>&))
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_valid()) laerror("invalid young frame");
|
|
#endif
|
|
|
|
//prepare numbers to apply to the tableaux
|
|
T n=this->sum();
|
|
T ncycles=n;
|
|
NRVec_from1<T> aplnumbers(n);
|
|
for(T i=1; i<=n; ++i) aplnumbers[i]=1;
|
|
|
|
//prepare static variables for the recursive procedure and generate all regular applications
|
|
this->clear();
|
|
_callyoung=true;
|
|
_young_callback<T> =callback;
|
|
_ncycles<T> =ncycles;
|
|
_tchi<T> = this;
|
|
_nn<T> = n;
|
|
_nowapplying<T> =0;
|
|
_aplnumbers<T> = &aplnumbers;
|
|
_character<T> =0;
|
|
Partition<T> oclin(n);
|
|
_oclin<T> = &oclin;
|
|
Partition<T> occol(n);
|
|
_occol<T> = &occol;
|
|
for(int i=1; i<=n; ++i) (*_oclin<T>)[i]= (*_occol<T>)[i]= 1;
|
|
nextapply<T>(1);
|
|
return _character<T>;
|
|
}
|
|
|
|
|
|
////generation of the young operator
|
|
|
|
template <typename T>
|
|
static NRPerm<T> _aperm;
|
|
|
|
template <typename T>
|
|
static NRPerm<T> _sperm;
|
|
|
|
template <typename T>
|
|
static const YoungTableaux<T> *_tyou;
|
|
|
|
template <typename T>
|
|
static const Partition<T> *_tyou_cols;
|
|
|
|
template <typename T>
|
|
static const Partition<T> *_tyou_rows;
|
|
|
|
static PERM_RANK_TYPE _nyoungterms, _expectterms;
|
|
|
|
template <typename T>
|
|
static T _antparity;
|
|
|
|
template <typename T, typename R>
|
|
PermutationAlgebra<T,R> *_young_r;
|
|
|
|
|
|
|
|
template <typename T>
|
|
static void symetr(T ilin, T iel)
|
|
{
|
|
|
|
if(ilin > (*_tyou_cols<T>)[1])
|
|
{
|
|
(*_young_r<T,T>)[_nyoungterms].weight = _antparity<T>;
|
|
(*_young_r<T,T>)[_nyoungterms].perm = _aperm<T>*_sperm<T>;
|
|
++_nyoungterms;
|
|
}
|
|
else if(iel > (*_tyou_rows<T>)[ilin]) symetr(ilin+1,(T)1);
|
|
else
|
|
{
|
|
int i;
|
|
|
|
for(i=1;i<=(*_tyou_rows<T>)[ilin];i++)
|
|
if(!_sperm<T>[(*_tyou<T>)[ilin][i]])
|
|
{
|
|
_sperm<T>[(*_tyou<T>)[ilin][i]]= (*_tyou<T>)[ilin][iel];
|
|
symetr(ilin,iel+1);
|
|
_sperm<T>[(*_tyou<T>)[ilin][i]]=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
static void antisym(T icol,T iel)
|
|
{
|
|
|
|
if(icol > (*_tyou_rows<T>)[1])
|
|
{
|
|
_antparity<T> = _aperm<T>.parity();
|
|
symetr<T>(1,1);
|
|
}
|
|
else
|
|
if(iel > (*_tyou_cols<T>)[icol]) antisym(icol+1,(T)1);
|
|
else
|
|
{
|
|
int i;
|
|
|
|
for(i=1;i<=(*_tyou_cols<T>)[icol];i++)
|
|
if(!_aperm<T>[(*_tyou<T>)[i][icol]])
|
|
{
|
|
_aperm<T>[(*_tyou<T>)[i][icol]]= (*_tyou<T>)[iel][icol];
|
|
antisym(icol,iel+1);
|
|
_aperm<T>[(*_tyou<T>)[i][icol]]=0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
PermutationAlgebra<T,T> YoungTableaux<T>::young_operator() const
|
|
{
|
|
#ifdef DEBUG
|
|
if(!this->is_standard()) laerror("young_operator called for non-standard tableaux");
|
|
#endif
|
|
_nyoungterms =0;
|
|
_tyou<T> = this;
|
|
Partition<T> rows=Partition<T>(*this);
|
|
Partition<T> cols=rows.adjoint();
|
|
_tyou_rows<T> = &rows;
|
|
_tyou_cols<T> = &cols;
|
|
|
|
T n=rows.sum();
|
|
_aperm<T>.resize(n); _aperm<T>.clear();
|
|
_sperm<T>.resize(n); _sperm<T>.clear();
|
|
|
|
|
|
_expectterms=1;
|
|
for(int i=1;i<=cols[1];i++) _expectterms *= factorial(rows[i]);
|
|
for(int i=1;i<=rows[1];i++) _expectterms *= factorial(cols[i]);
|
|
|
|
PermutationAlgebra<T,T> r(_expectterms);
|
|
_young_r<T,T> = &r;
|
|
|
|
antisym<T>(1,1);
|
|
|
|
if(_nyoungterms!=_expectterms) laerror("youngconstruct: inconsistent number of terms");
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
static NRVec_from1<CompressedPartition<T> > *_irreps;
|
|
|
|
template <typename T>
|
|
static NRVec_from1<CompressedPartition<T> > *_classes;
|
|
|
|
template <typename T>
|
|
static PERM_RANK_TYPE _ithrough;
|
|
|
|
|
|
template <typename T>
|
|
static void _process_partition(const Partition<T> &p)
|
|
{
|
|
++_ithrough<T>;
|
|
(*_irreps<T>)[_ithrough<T>] = CompressedPartition<T>(p);
|
|
Partition<T> q=p.adjoint();
|
|
(*_classes<T>)[_ithrough<T>] = CompressedPartition<T>(q);
|
|
}
|
|
|
|
template <typename T>
|
|
Sn_characters<T>::Sn_characters(const int n0)
|
|
:n(n0)
|
|
{
|
|
Partition<T> p(n);
|
|
PERM_RANK_TYPE np = partitions(n);
|
|
irreps.resize(np);
|
|
classes.resize(np);
|
|
classsizes.resize(np);
|
|
chi.resize(np,np);
|
|
_irreps<T> = &irreps;
|
|
_classes<T> = &classes;
|
|
_ithrough<T> = 0;
|
|
//generate partitions for classes and irreps
|
|
PERM_RANK_TYPE tot=p.generate_all(_process_partition<T>);
|
|
//compute class sizes
|
|
for(int i=1; i<=np; ++i) classsizes[i]= classes[i].Sn_class_size();
|
|
//compute characters
|
|
for(int i=1; i<=np; ++i)
|
|
{
|
|
for(int j=1; j<=np; ++j)
|
|
{
|
|
chi(i,j) = Sn_character<T>(irreps[i],classes[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool Sn_characters<T>::is_valid() const
|
|
{
|
|
//consistency of n and partition number
|
|
PERM_RANK_TYPE np = partitions(n);
|
|
if(np!=classes.size() || np!=irreps.size() || np!=classsizes.size() ||np!=chi.nrows() ||np!=chi.ncols()) return false;
|
|
|
|
//consistency of sum = n in all partitions
|
|
for(int i=1; i<=np; ++i)
|
|
{
|
|
if(irreps[i].sum()!=n) return false;
|
|
if(classes[i].sum()!=n) return false;
|
|
}
|
|
|
|
//consistency of irrep dim squared to n!
|
|
//consistency of irrep dimensions by hook length formula to character of identity (asserted as class no. 1)
|
|
if(classes[1][1]!=n) laerror("assetion failed on class no. 1 being identity");
|
|
PERM_RANK_TYPE nf = factorial(n);
|
|
PERM_RANK_TYPE s=0;
|
|
for(int i=1; i<=np; ++i)
|
|
{
|
|
T d=chi(i,1);
|
|
s += d*d;
|
|
T dd=Partition<T>(irreps[i]).Sn_irrep_dim();
|
|
if(d!=dd) return false;
|
|
}
|
|
if(s!=nf) return false;
|
|
|
|
//consistency of class sizes sum to n!
|
|
s=0; for(int i=1; i<=np; ++i) s+= classsizes[i];
|
|
if(s!=nf) return false;
|
|
|
|
//check that irrep [n] is totally symmetric
|
|
if(irreps[1][n]!=1) laerror("assetion failed on first irrep being [n]");
|
|
for(int i=1; i<=np; ++i) if(chi(1,i)!=1) return false;
|
|
|
|
//check that irrep[1^n] is totally antisymmetric
|
|
if(irreps[np][1]!=n) laerror("assetion failed on last irrep being [1^n]");
|
|
for(int i=1; i<=np; ++i) if(chi(np,i)!=classes[i].parity()) return false;
|
|
|
|
//check character orthonormality between irreps
|
|
for(int i=1; i<=np; ++i) for(int j=1; j<=i; ++j)
|
|
{
|
|
s=0;
|
|
for(int k=1; k<=np; ++k) s+= classsizes[k]*chi(i,k)*chi(j,k);
|
|
if(i==j)
|
|
{
|
|
if(s!=nf) return false;
|
|
}
|
|
else
|
|
{
|
|
if(s!=0) return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
std::ostream & operator<<(std::ostream &s, const Sn_characters<T> &c)
|
|
{
|
|
const int w=4+c.n; //some reasonable width
|
|
s<<"S"<<c.n<<" "<<c.classes.size()<<std::endl;
|
|
s.width(w); s<<" ";
|
|
for(int i=1; i<=c.classes.size(); ++i)
|
|
{
|
|
s.width(w);
|
|
s<<c.classsizes[i]<<" ";
|
|
}
|
|
s<<std::endl;
|
|
s.width(w); s<<" ";
|
|
for(int i=1; i<=c.classes.size(); ++i)
|
|
{
|
|
std::ostringstream classlabel;
|
|
classlabel<<"("<<c.classes[i]<<")";
|
|
s.width(w);
|
|
s<<classlabel.str()<<" ";
|
|
}
|
|
s<<std::endl;
|
|
for(int i=1; i<=c.chi.nrows(); ++i)
|
|
{
|
|
std::ostringstream irrep;
|
|
irrep<<"["<<c.irreps[i]<<"] ";
|
|
s.width(w); s<<irrep.str();
|
|
for(int j=1; j<=c.chi.ncols(); ++j) {s.width(w); s<<c.chi(i,j)<<" ";}
|
|
s<<std::endl;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
bool CycleIndex<T>::is_valid() const
|
|
{
|
|
if(classes.size()!=classsizes.size()) return false;
|
|
T n=classes[1].sum();
|
|
for(int i=2; i<=classes.size(); ++i)
|
|
{
|
|
if(classes[i].sum()!=n) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
Polynomial<T> CycleIndex<T>::substitute(const Polynomial<T> &p, PERM_RANK_TYPE *denom) const
|
|
{
|
|
Polynomial<T> r(0);
|
|
r[0]=(T)0;
|
|
*denom =0;
|
|
|
|
for(int i=1; i<=classes.size(); ++i)
|
|
{
|
|
Polynomial<T> term(0);
|
|
term[0]=(T)1;
|
|
for(int j=1; j<=classes[i].size(); ++j) if(classes[i][j]) term *= (p.powx(j)).pow((int)classes[i][j]);
|
|
r += term*classsizes[i];
|
|
*denom += classsizes[i];
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
PermutationAlgebra<T,T> general_antisymmetrizer(const NRVec<NRVec_from1<T> > &groups, int restriction_type, bool inverted)
|
|
{
|
|
PermutationAlgebra<T,T> r;
|
|
int ngroups=groups.size();
|
|
if(ngroups==0) return r;
|
|
NRVec<PermutationAlgebra<T,T> > lists(ngroups);
|
|
for(int i=0; i<ngroups; ++i)
|
|
{
|
|
int ni = groups[i].size();
|
|
NRPerm<T> tmp(ni);
|
|
lists[i] = tmp.list_restricted(groups[i],restriction_type,inverted);
|
|
}
|
|
//cross-product the lists
|
|
r=lists[0];
|
|
for(int i=1; i<ngroups; ++i) r= r&lists[i];
|
|
return r;
|
|
}
|
|
|
|
|
|
/***************************************************************************//**
|
|
* forced instantization in the corresponding object file
|
|
******************************************************************************/
|
|
|
|
#define INSTANTIZE(T) \
|
|
template class NRPerm<T>; \
|
|
template class CyclePerm<T>; \
|
|
template class CompressedPartition<T>; \
|
|
template class Partition<T>; \
|
|
template class YoungTableaux<T>; \
|
|
template class Sn_characters<T>; \
|
|
template class CycleIndex<T>; \
|
|
template PermutationAlgebra<T,T> general_antisymmetrizer(const NRVec<NRVec_from1<T> > &groups, int, bool); \
|
|
template std::istream & operator>>(std::istream &s, CyclePerm<T> &x); \
|
|
template std::ostream & operator<<(std::ostream &s, const CyclePerm<T> &x); \
|
|
template std::ostream & operator<<(std::ostream &s, const CompressedPartition<T> &x); \
|
|
template std::ostream & operator<<(std::ostream &s, const YoungTableaux<T> &x); \
|
|
template T Sn_character(const Partition<T> &irrep, const Partition<T> &cclass); \
|
|
template std::ostream & operator<<(std::ostream &s, const Sn_characters<T> &x); \
|
|
|
|
|
|
#define INSTANTIZE2(T,R) \
|
|
template class WeightPermutation<T,R>; \
|
|
template class PermutationAlgebra<T,R>; \
|
|
template std::istream & operator>>(std::istream &s, WeightPermutation<T,R> &x); \
|
|
template std::ostream & operator<<(std::ostream &s, const WeightPermutation<T,R> &x); \
|
|
|
|
|
|
INSTANTIZE(int)
|
|
INSTANTIZE(unsigned int)
|
|
|
|
|
|
INSTANTIZE2(int,int)
|
|
|
|
|
|
INSTANTIZE2(int,double)
|
|
|
|
}//namespace
|