103 lines
2.9 KiB
C++
103 lines
2.9 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2008 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef _CONJGRAD_H_
|
|
#define _CONJGRAD_H_
|
|
#include "vec.h"
|
|
#include "smat.h"
|
|
#include "mat.h"
|
|
#include "sparsemat.h"
|
|
#include "nonclass.h"
|
|
#include <iomanip>
|
|
|
|
namespace LA {
|
|
|
|
//conjugate gradient solution of a linear system
|
|
|
|
//matrix can be any class which has nrows(), ncols(), diagonalof() and gemv() available
|
|
//does not even have to be explicitly stored
|
|
//Conjugate gradient algorithm, cf. Bulirsch-Stoer book
|
|
|
|
|
|
template<typename T, typename Matrix>
|
|
extern bool conjgrad(const Matrix &bigmat, const NRVec<T> &b, NRVec<T> &x, const bool doguess=true, const double tol=1e-8, const int itmax=1000, const bool verbose=true, bool issquare=1,const bool precondition=1)
|
|
{
|
|
int m=bigmat.nrows();
|
|
int n=bigmat.ncols();
|
|
|
|
if(x.size()!=n || b.size() != m) laerror("incompatible vectors and matrix sizes in conjgrad");
|
|
if(m!=n) issquare=0;
|
|
|
|
double t,tt,bscal,ascal;
|
|
|
|
NRVec<T> p,rr, *r;
|
|
NRVec<T> q(m),s(m);
|
|
if(issquare) r=&s; else r = new NRVec<T>(m);
|
|
|
|
if(doguess)
|
|
{
|
|
bigmat.gemv(0,x,'t',-1.,b); //x.gemv(0,bigmat,'t',-1.,b);
|
|
if(precondition) bigmat.diagonalof(x,true);
|
|
x.normalize();
|
|
}
|
|
|
|
bigmat.gemv(0,s,'n',-1.,x); //s.gemv(0,bigmat,'n',-1.,x);
|
|
s+=b;
|
|
if(!issquare) bigmat.gemv(0,*r,'t',1,s); //(*r).gemv(0,bigmat,'t',1,s);
|
|
rr= *r;
|
|
if(precondition) bigmat.diagonalof(rr,true);
|
|
p=rr;
|
|
|
|
for(int iter=0; iter<= itmax; iter++)
|
|
{
|
|
double err=p.norm();
|
|
if(verbose)
|
|
{
|
|
std::cout << "conjgrad: iter= "<<iter<<" err= "<<
|
|
std::setiosflags(std::ios::scientific)<<std::setprecision(8) <<err<<
|
|
std::resetiosflags(std::ios::scientific)<<std::setprecision(12)<<"\n";
|
|
std::cout.flush();
|
|
}
|
|
if(err <= tol)
|
|
{
|
|
if(!issquare) delete r;
|
|
return true;
|
|
}
|
|
|
|
bigmat.gemv(0,q,'n',1,p); //q.gemv(0,bigmat,'n',1,p);
|
|
tt= (*r) * rr;
|
|
t=issquare?p*q:q*q;
|
|
if(!t) {if(!issquare) delete r; laerror("conjgrad: singular matrix 1");}
|
|
ascal=tt/t;
|
|
x.axpy(ascal,p);
|
|
s.axpy(-ascal,q);
|
|
if(!issquare) bigmat.gemv(0,*r,'t',1,s); //(*r).gemv(0,bigmat,'t',1,s);
|
|
rr= *r;
|
|
if(precondition) bigmat.diagonalof(rr,true);
|
|
if(!tt) {if(!issquare) delete r; laerror("conjgrad: singular matrix 2");}
|
|
bscal= ((*r)*rr)/tt;
|
|
rr.axpy(bscal,p);
|
|
p=rr;
|
|
}
|
|
|
|
if(!issquare) delete r;
|
|
return false;
|
|
}
|
|
|
|
}//namespace
|
|
#endif
|