LA_library/contfrac.cc

552 lines
11 KiB
C++

/*
LA: linear algebra C++ interface library
Copyright (C) 2022 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "contfrac.h"
#include "permutation.h"
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <list>
namespace LA {
template <typename T>
ContFrac<T>::ContFrac(double x, const int n, const T thres) : NRVec<T>(n+1)
{
for(int i=0; i<=n; ++i)
{
NRVec<T>::v[i]=floor(x);
x -= NRVec<T>::v[i];
double y= 1./x;
if(x==0. || (thres && fabs(y)>thres)) {resize(i,true); return;}
x=y;
}
}
//we have to recursively first determine length and then allocate and fill the values during recursion unwinding
template <typename T>
static void cf_helper(ContFrac<T> *me, T p, T q, int level)
{
T div=p/q;
{
T rem=p%q;
if(rem)
{
if(rem<0) {--div; rem+=q;} //prevent negative a_i i>0
cf_helper(me,q,rem,level+1);
}
else me->resize(level);
}
(*me)[level]=div;
}
template <typename T>
ContFrac<T>::ContFrac(T p, T q) : NRVec<T>()
{
if(q<0) {p= -p; q= -q;}
cf_helper<T>(this,p,q,0);
}
template <typename T>
ContFrac<T> ContFrac<T>::reciprocal() const
{
int n=this->length();
if((*this)[0] == 0)
{
ContFrac<T> r(n-1);
for(int i=1; i<=n; ++i) r[i-1] = (*this)[i];
return r;
}
else
{
ContFrac<T> r(n+1);
r[0]=0;
for(int i=0; i<=n; ++i) r[i+1] = (*this)[i];
return r;
}
}
template <typename T>
void ContFrac<T>::convergent(T *p, T*q, const int trunc) const
{
int top=this->length();
if(trunc != -1) top=trunc;
NRVec<T> hh(top+3),kk(top+3);
T *h= &hh[2];
T *k= &kk[2];
//start for recurrent relations
h[-2]=k[-1]=0;
h[-1]=k[-2]=1;
for(int i=0; i<=top; ++i)
{
if(i>0 && (*this)[i]==0) //terminate by 0 which means infinity if not canonically shortened
{
*p=h[i-1];
*q=k[i-1];
return;
}
h[i] = (*this)[i]*h[i-1] + h[i-2];
k[i] = (*this)[i]*k[i-1] + k[i-2];
}
*p=h[top];
*q=k[top];
}
template <typename T>
double ContFrac<T>::value(const int trunc) const
{
T p,q;
convergent(&p,&q,trunc);
double x=p;
x/=q;
return x;
}
//compare assuming they are canonical
template <typename T>
T ContFrac<T>::compare(const ContFrac<T> &rhs) const
{
int l=length();
if(rhs.length()<l) l=rhs.length();
for(int i=0; i<=l; ++i)
{
T d=(*this)[i]-rhs[i];
if(d) return (i&1)? -d :d;
}
if(length()==rhs.length()) return 0;
else if(length()<rhs.length()) return (length()&1) ? 1 : -1;
else return (rhs.length()&1) ? -1 : 1;
}
template <typename T>
void ContFrac<T>::canonicalize()
{
int n=this->length();
if(n==0) return;
if(n>0 && (*this)[1]<0) //handle negative a_i i>0
{
for(int i=0; i<=n; ++i) (*this[i]) = -(*this[i]);
*this = -(*this);
}
this->copyonwrite();
if((*this)[n]==1) {(*this)[n]=0; ++(*this)[n-1];} //avoid deepest 1/1
for(int i=1; i<=n; ++i) //truncate if possible
{
if((*this)[i]==0) //convention for infinity
{
resize(i-1,true);
return;
}
}
}
template <typename T>
Homographic<T> Homographic<T>::input(const T &z, const bool inf) const
{
Homographic<T> hnew;
if(inf) //effective infinity, end of input
{
hnew.v[0][0]=hnew.v[0][1]=v[0][1];
hnew.v[1][0]=hnew.v[1][1]=v[1][1];
}
else
{
hnew.v[0][0]=v[0][1];
hnew.v[1][0]=v[1][1];
hnew.v[0][1]=v[0][0]+v[0][1]* z;
hnew.v[1][1]=v[1][0]+v[1][1]* z;
}
return hnew;
}
template <typename T>
Homographic<T> Homographic<T>::output(const T &z) const
{
Homographic<T> hnew;
hnew.v[0][0]=v[1][0];
hnew.v[0][1]=v[1][1];
hnew.v[1][0]=v[0][0]-v[1][0]*z;
hnew.v[1][1]=v[0][1]-v[1][1]*z;
return hnew;
}
template <typename T>
bool Homographic<T>::outputready(T &z,bool first) const
{
bool inf=0;
T q0,q1;
if(v[1][0]==0) inf=1; else q0=v[0][0]/v[1][0];
if(v[1][1]==0) inf=1; else q1=v[0][1]/v[1][1];
if(!inf && q0==q1)
{
z=q0;
if(first && q0<0) --z; //prevent negative a1 etc.
return true;
}
return false;
}
template <typename T>
bool Homographic<T>::terminate() const
{
return v[1][0]==0&&v[1][1]==0;
}
template <typename T>
ContFrac<T> Homographic<T>::value(const ContFrac<T>&x) const
{
Homographic<T> h(*this);
std::list<T> l;
bool first=true;
for(typename ContFrac<T>::iterator px=x.begin(); px!=x.beyondend(); ++px)
{
//digest next input term
h=h.input(*px,px==x.end()|| px!=x.begin()&& *px==0);
//output as much as possible
T out;
while(h.outputready(out,first))
{
l.push_back(out);
h=h.output(out);
first=false;
}
//terminate if exhausted
if(h.terminate())
{
if(px!=x.end()) laerror("unexpected termination in Homographic::value");
break;
}
}
if(l.back()==1) //simplify by removing a trailing 1
{
l.pop_back();
l.back()+=1;
}
return ContFrac<T>(l);
}
template <typename T>
BiHomographic<T> BiHomographic<T>::inputx(const T &x, const bool inf) const
{
BiHomographic<T> hnew;
for(int i=0; i<2; ++i)
{
hnew.v[i][0][0]= v[i][0][1];
hnew.v[i][0][1]= inf?v[i][0][1] : v[i][0][0]+v[i][0][1]*x;
hnew.v[i][1][0]= v[i][1][1];
hnew.v[i][1][1]= inf?v[i][1][1] : v[i][1][0]+v[i][1][1]*x;
}
return hnew;
}
template <typename T>
BiHomographic<T> BiHomographic<T>::inputy(const T &y, const bool inf) const
{
BiHomographic<T> hnew;
for(int i=0; i<2; ++i)
{
hnew.v[i][0][0]= v[i][1][0];
hnew.v[i][0][1]= v[i][1][1];
hnew.v[i][1][0]= inf?v[i][1][0] : v[i][0][0]+v[i][1][0]*y;
hnew.v[i][1][1]= inf?v[i][1][1] : v[i][0][1]+v[i][1][1]*y;
}
return hnew;
}
template <typename T>
BiHomographic<T> BiHomographic<T>::output(const T &z) const
{
BiHomographic<T> hnew;
for(int i=0; i<2; ++i) for(int j=0; j<2; ++j)
{
hnew.v[0][i][j]= v[1][i][j];
hnew.v[1][i][j]= v[0][i][j] - v[1][i][j]*z;
}
return hnew;
}
template <typename T>
int BiHomographic<T>::inputselect() const
{
if(v[1][0][0]==0)
{
if(v[1][0][1]==0) return 1;
else return 0;
}
if(v[1][0][1]==0) return 0;
if(v[1][1][0]==0) return 1;
if(MYABS(v[0][0][1]/v[1][0][1] - v[0][0][0]/v[1][0][0]) > MYABS(v[0][1][0]/v[1][1][0] - v[0][0][0]/v[1][0][0])) return 0;
return 1;
}
template <typename T>
bool BiHomographic<T>::outputready(T &z,bool first) const
{
T q[2][2];
for(int i=0; i<2; ++i) for(int j=0; j<2; ++j)
{
if(v[1][i][j]==0) return false;
else q[i][j]=v[0][i][j]/v[1][i][j];
if(q[i][j]!=q[0][0]) return false;
}
z=q[0][0];
if(first && z<0) --z;
return true;
}
template <typename T>
bool BiHomographic<T>::terminate() const
{
return v[1][0][0]==0&&v[1][0][1]==0&&v[1][1][0]==0&&v[1][1][1]==0;
}
template <typename T>
ContFrac<T> BiHomographic<T>::value(const ContFrac<T>&x, const ContFrac<T>&y) const
{
BiHomographic<T> h(*this);
std::list<T> l;
typename ContFrac<T>::iterator px=x.begin();
typename ContFrac<T>::iterator py=y.begin();
bool first=true;
do
{
//select next input term
int which;
if(px==x.beyondend()) which=1;
else if(py==y.beyondend()) which=0;
else which = h.inputselect();
if(which) {h=h.inputy(*py,py==y.end()|| py!=y.begin()&& *py==0); ++py;}
else {h=h.inputx(*px,px==x.end()|| px!=x.begin()&& *px==0); ++px;}
//output as much as possible
T out;
while(h.outputready(out,first))
{
l.push_back(out);
h=h.output(out);
first=false;
}
//terminate if exhausted
if(h.terminate())
{
if(px!=x.end()&&px!=x.beyondend() || py!=y.end()&&py!=y.beyondend()) laerror("unexpected termination in Homographic::value");
break;
}
}
while(px!=x.beyondend() || py!=y.beyondend());
if(l.back()==1) //simplify by removing a trailing 1
{
l.pop_back();
l.back()+=1;
}
return ContFrac<T>(l);
}
template <typename T>
void Rational<T>::simplify()
{
if(den<0)
{
num= -num;
den= -den;
}
T g=gcd(num,den);
if(g>1)
{
num/=g;
den/=g;
}
}
template <typename T>
Rational<T> & Rational<T>::operator*=(const T &rhs)
{
T r=rhs;
T g=gcd(r,den);
if(MYABS(g)>1)
{
r/=g;
den/=g;
}
num*=r;
return *this;
}
template <typename T>
Rational<T> & Rational<T>::operator/=(const T &rhs)
{
T r=rhs;
T g=gcd(r,num);
if(MYABS(g)>1)
{
r/=g;
num/=g;
}
den*=r;
return *this;
}
//try avoiding overflows at the cost of speed
template <typename T>
Rational<T> Rational<T>::operator+(const Rational &rhs) const
{
Rational r;
r.den = lcm(den,rhs.den);
r.num = num*(r.den/den) + rhs.num*(r.den/rhs.den);
r.simplify();
return r;
}
template <typename T>
Rational<T> Rational<T>::operator-(const Rational &rhs) const
{
Rational r;
r.den = lcm(den,rhs.den);
r.num = num*(r.den/den) - rhs.num*(r.den/rhs.den);
r.simplify();
return r;
}
template <typename T>
Rational<T> & Rational<T>::operator*=(const Rational &rhs)
{
Rational r(rhs);
T g;
g=gcd(num,r.den);
if(MYABS(g)>1)
{
num/=g;
r.den/=g;
}
g=gcd(den,r.num);
if(MYABS(g)>1)
{
den/=g;
r.num/=g;
}
num*=r.num;
den*=r.den;
if(den<0) {den= -den; num= -num;}
return *this;
}
//unary -
template <typename T>
ContFrac<T> ContFrac<T>::operator-() const
{
int l=length();
if(l==0)
{
ContFrac<T> r(0);
r[0]= -(*this)[0];
return r;
}
if((*this)[1]!=1)
{
ContFrac<T> r(l+1);
r[0]= -(*this)[0]-1;
r[1]= 1;
r[2]= (*this)[1]-1;
for(int i=2; i<=l; ++i) r[i+1] = (*this)[i];
return r;
}
else //a_1-1 == 0
{
if(l==1) //we have trailing 0, actually the input was not canonical
{
ContFrac<T> r(0);
r[0]= -(*this)[0]-1;
return r;
}
else
{
ContFrac<T> r(l-1);
r[0]= -(*this)[0]-1;
r[1]= 1+(*this)[2];
for(int i=3; i<=l; ++i) r[i-1] = (*this)[i];
return r;
}
}
}
/***************************************************************************//**
* forced instantization in the corresponding object file
******************************************************************************/
template class Rational<int>;
template class Rational<long>;
template class Rational<long long>;
template class ContFrac<int>;
template class ContFrac<long>;
template class ContFrac<long long>;
template class Homographic<int>;
template class Homographic<long>;
template class Homographic<long long>;
template class BiHomographic<int>;
template class BiHomographic<long>;
template class BiHomographic<long long>;
#define INSTANTIZE(T) \
INSTANTIZE(int)
INSTANTIZE(unsigned int)
}//namespace