168 lines
7.0 KiB
C++
168 lines
7.0 KiB
C++
#ifndef _QSORT_H
|
|
#define _QSORT_H
|
|
//quicksort, returns parity of the permutation
|
|
|
|
template<typename INDEX, typename COMPAR>
|
|
int genqsort(INDEX l, INDEX r,COMPAR (*cmp)(const INDEX, const INDEX), void (*swap)(const INDEX,const INDEX))
|
|
{
|
|
INDEX i,j,piv;
|
|
int parity=0;
|
|
|
|
if(r<=l) return parity; //1 element
|
|
if(cmp(r,l)<0) {parity^=1; swap(l,r);}
|
|
if(r-l==1) return parity; //2 elements and preparation for median
|
|
piv= l+(r-l)/2; //pivoting by median of 3 - safer
|
|
if(cmp(piv,l)<0) {parity^=1; swap(l,piv);} //and change the pivot element implicitly
|
|
if(cmp(r,piv)<0) {parity^=1; swap(r,piv);} //and change the pivot element implicitly
|
|
if(r-l==2) return parity; //in the case of 3 elements we are finished too
|
|
|
|
//general case , l-th r-th already processed
|
|
i=l+1; j=r-1;
|
|
do{
|
|
//important sharp inequality - stops at sentinel element for efficiency
|
|
// this is inefficient if all keys are equal - unnecessary n log n swaps are done, but we assume that it is atypical input
|
|
while(cmp(i++,piv)<0);
|
|
i--;
|
|
while(cmp(j--,piv)>0);
|
|
j++;
|
|
if(i<j)
|
|
{
|
|
// swap and keep track of position of pivoting element
|
|
parity^=1; swap(i,j);
|
|
if(i==piv) piv=j; else if(j==piv) piv=i;
|
|
}
|
|
if(i<=j) {i++; j--;}
|
|
}while(i<=j);
|
|
|
|
if(j-l < r-i) //because of the stack in bad case process first the shorter subarray
|
|
{if(l<j) parity ^=genqsort(l,j,cmp,swap); if(i<r) parity ^=genqsort(i,r,cmp,swap);}
|
|
else
|
|
{if(i<r) parity ^=genqsort(i,r,cmp,swap); if(l<j) parity ^=genqsort(l,j,cmp,swap);}
|
|
return parity;
|
|
}
|
|
|
|
|
|
|
|
//for SORTABLE classes which provide LA_sort_traits<SORTABLE,INDEX,type>::compare and swap member functions
|
|
//this allows to use it in general templates also for complex elements, for which comparison falls back to error
|
|
template<int type, typename SORTABLE, typename INDEX, typename PERMINDEX>
|
|
int memqsort(SORTABLE &object, PERMINDEX *perm, INDEX l, INDEX r)
|
|
{
|
|
INDEX i,j,piv;
|
|
int parity=0;
|
|
|
|
if(r<=l) return parity; //1 element
|
|
if(LA_sort_traits<SORTABLE,INDEX,type>::compare(object,l,r)) {parity^=1; object.swap(l,r); if(perm) {PERMINDEX tmp=perm[l]; perm[l]=perm[r]; perm[r]=tmp;}}
|
|
if(r-l==1) return parity; //2 elements and preparation for median
|
|
piv= l+(r-l)/2; //pivoting by median of 3 - safer
|
|
if(LA_sort_traits<SORTABLE,INDEX,type>::compare(object,l,piv)) {parity^=1; object.swap(l,piv); if(perm) {PERMINDEX tmp=perm[l]; perm[l]=perm[piv]; perm[piv]=tmp;}} //and change the pivot element implicitly
|
|
if(LA_sort_traits<SORTABLE,INDEX,type>::compare(object,piv,r)) {parity^=1; object.swap(r,piv); if(perm) {PERMINDEX tmp=perm[r]; perm[r]=perm[piv]; perm[piv]=tmp;}} //and change the pivot element implicitly
|
|
if(r-l==2) return parity; //in the case of 3 elements we are finished too
|
|
|
|
//general case , l-th r-th already processed
|
|
i=l+1; j=r-1;
|
|
do{
|
|
//important sharp inequality - stops at sentinel element for efficiency
|
|
// this is inefficient if all keys are equal - unnecessary n log n swaps are done, but we assume that it is atypical input
|
|
while(LA_sort_traits<SORTABLE,INDEX,type>::compare(object,piv,i++));
|
|
i--;
|
|
while(LA_sort_traits<SORTABLE,INDEX,type>::compare(object,j--,piv));
|
|
j++;
|
|
if(i<j)
|
|
{
|
|
// swap and keep track of position of pivoting element
|
|
parity^=1; object.swap(i,j); if(perm) {PERMINDEX tmp=perm[i]; perm[i]=perm[j]; perm[j]=tmp;}
|
|
if(i==piv) piv=j; else if(j==piv) piv=i;
|
|
}
|
|
if(i<=j) {i++; j--;}
|
|
}while(i<=j);
|
|
|
|
if(j-l < r-i) //because of the stack in bad case process first the shorter subarray
|
|
{if(l<j) parity ^=memqsort<type,SORTABLE,INDEX,PERMINDEX>(object,perm,l,j); if(i<r) parity ^=memqsort<type,SORTABLE,INDEX,PERMINDEX>(object,perm,i,r);}
|
|
else
|
|
{if(i<r) parity ^=memqsort<type,SORTABLE,INDEX,PERMINDEX>(object,perm,i,r); if(l<j) parity ^=memqsort<type,SORTABLE,INDEX,PERMINDEX>(object,perm,l,j);}
|
|
return parity;
|
|
}
|
|
|
|
|
|
template<typename S, typename PERMINDEX>
|
|
int ptrqsortup(S *l, S *r, PERMINDEX *perm=NULL)
|
|
{
|
|
S *i,*j,*piv;
|
|
int parity=0;
|
|
|
|
if(r-l<=0) return parity; //1 element
|
|
if(*l > *r) {parity^=1; {S tmp; tmp=*l; *l= *r; *r=tmp;} if(perm) {PERMINDEX tmp=*perm; *perm=perm[r-l]; perm[r-l]=tmp;}}
|
|
if(r-l==1) return parity; //2 elements and preparation for median
|
|
piv= l+(r-l)/2; //pivoting by median of 3 - safer
|
|
if(*l>*piv) {parity^=1; {S tmp; tmp=*l; *l=*piv; *piv=tmp;} if(perm) {PERMINDEX tmp= *perm; *perm=perm[piv-l]; perm[piv-l]=tmp;}} //and change the pivot element implicitly
|
|
if(*piv>*r) {parity^=1; {S tmp; tmp=*r; *r=*piv; *piv=tmp;} if(perm) {PERMINDEX tmp=perm[r-l]; perm[r-l]=perm[piv-l]; perm[piv-l]=tmp;}} //and change the pivot element implicitly
|
|
if(r-l==2) return parity; //in the case of 3 elements we are finished too
|
|
|
|
//general case , l-th r-th already processed
|
|
i=l+1; j=r-1;
|
|
do{
|
|
//important sharp inequality - stops at sentinel element for efficiency
|
|
// this is inefficient if all keys are equal - unnecessary n log n swaps are done, but we assume that it is atypical input
|
|
while(*piv > *i++);
|
|
i--;
|
|
while(*j-- > *piv);
|
|
j++;
|
|
if(i<j)
|
|
{
|
|
// swap and keep track of position of pivoting element
|
|
parity^=1; {S tmp; tmp=*i; *i=*j; *j=tmp;} if(perm) {PERMINDEX tmp=perm[i-l]; perm[i-l]=perm[j-l]; perm[j-l]=tmp;}
|
|
if(i==piv) piv=j; else if(j==piv) piv=i;
|
|
}
|
|
if(i<=j) {i++; j--;}
|
|
}while(i<=j);
|
|
|
|
if(j-l < r-i) //because of the stack in bad case process first the shorter subarray
|
|
{if(l<j) parity ^=ptrqsortup(l,j,perm); if(i<r) parity ^=ptrqsortup(i,r,perm+(i-l));}
|
|
else
|
|
{if(i<r) parity ^=ptrqsortup(i,r,perm+(i-l)); if(l<j) parity ^=ptrqsortup(l,j,perm);}
|
|
return parity;
|
|
}
|
|
|
|
|
|
template<typename S, typename PERMINDEX>
|
|
int ptrqsortdown(S *l, S *r, PERMINDEX *perm=NULL)
|
|
{
|
|
S *i,*j,*piv;
|
|
int parity=0;
|
|
|
|
if(r-l<=0) return parity; //1 element
|
|
if(*l < *r) {parity^=1; {S tmp; tmp=*l; *l= *r; *r=tmp;} if(perm) {PERMINDEX tmp=*perm; *perm=perm[r-l]; perm[r-l]=tmp;}}
|
|
if(r-l==1) return parity; //2 elements and preparation for median
|
|
piv= l+(r-l)/2; //pivoting by median of 3 - safer
|
|
if(*l<*piv) {parity^=1; {S tmp; tmp=*l; *l=*piv; *piv=tmp;} if(perm) {PERMINDEX tmp= *perm; *perm=perm[piv-l]; perm[piv-l]=tmp;}} //and change the pivot element implicitly
|
|
if(*piv<*r) {parity^=1; {S tmp; tmp=*r; *r=*piv; *piv=tmp;} if(perm) {PERMINDEX tmp=perm[r-l]; perm[r-l]=perm[piv-l]; perm[piv-l]=tmp;}} //and change the pivot element implicitly
|
|
if(r-l==2) return parity; //in the case of 3 elements we are finished too
|
|
|
|
//general case , l-th r-th already processed
|
|
i=l+1; j=r-1;
|
|
do{
|
|
//important sharp inequality - stops at sentinel element for efficiency
|
|
// this is inefficient if all keys are equal - unnecessary n log n swaps are done, but we assume that it is atypical input
|
|
while(*piv < *i++);
|
|
i--;
|
|
while(*j-- < *piv);
|
|
j++;
|
|
if(i<j)
|
|
{
|
|
// swap and keep track of position of pivoting element
|
|
parity^=1; {S tmp; tmp=*i; *i=*j; *j=tmp;} if(perm) {PERMINDEX tmp=perm[i-l]; perm[i-l]=perm[j-l]; perm[j-l]=tmp;}
|
|
if(i==piv) piv=j; else if(j==piv) piv=i;
|
|
}
|
|
if(i<=j) {i++; j--;}
|
|
}while(i<=j);
|
|
|
|
if(j-l < r-i) //because of the stack in bad case process first the shorter subarray
|
|
{if(l<j) parity ^=ptrqsortdown(l,j,perm); if(i<r) parity ^=ptrqsortdown(i,r,perm+(i-l));}
|
|
else
|
|
{if(i<r) parity ^=ptrqsortdown(i,r,perm+(i-l)); if(l<j) parity ^=ptrqsortdown(l,j,perm);}
|
|
return parity;
|
|
}
|
|
|
|
#endif
|