171 lines
5.8 KiB
C++
171 lines
5.8 KiB
C++
#ifndef _LA_NONCLASS_H_
|
|
#define _LA_NONCLASS_H_
|
|
|
|
#include "vec.h"
|
|
#include "smat.h"
|
|
#include "mat.h"
|
|
#include "la_traits.h"
|
|
|
|
|
|
//MISC
|
|
export template <class T>
|
|
const NRMat<T> diagonalmatrix(const NRVec<T> &x)
|
|
{
|
|
int n=x.size();
|
|
NRMat<T> result((T)0,n,n);
|
|
T *p = result[0];
|
|
for(int j=0; j<n; j++) {*p = x[j]; p+=(n+1);}
|
|
return result;
|
|
}
|
|
|
|
|
|
//more efficient commutator for a special case of full matrices
|
|
template<class T>
|
|
inline const NRMat<T> commutator ( const NRMat<T> &x, const NRMat<T> &y, const bool trx=0, const bool tryy=0)
|
|
{
|
|
NRMat<T> r(trx?x.ncols():x.nrows(), tryy?y.nrows():y.ncols());
|
|
r.gemm((T)0,x,trx?'t':'n',y,tryy?'t':'n',(T)1);
|
|
r.gemm((T)1,y,tryy?'t':'n',x,trx?'t':'n',(T)-1);
|
|
return r;
|
|
}
|
|
|
|
//more efficient commutator for a special case of full matrices
|
|
template<class T>
|
|
inline const NRMat<T> anticommutator ( const NRMat<T> &x, const NRMat<T> &y, const bool trx=0, const bool tryy=0)
|
|
{
|
|
NRMat<T> r(trx?x.ncols():x.nrows(), tryy?y.nrows():y.ncols());
|
|
r.gemm((T)0,x,trx?'t':'n',y,tryy?'t':'n',(T)1);
|
|
r.gemm((T)1,y,tryy?'t':'n',x,trx?'t':'n',(T)1);
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
|
|
//////////////////////
|
|
// LAPACK interface //
|
|
//////////////////////
|
|
|
|
#define declare_la(T) \
|
|
extern const NRVec<T> diagofproduct(const NRMat<T> &a, const NRMat<T> &b,\
|
|
bool trb=0, bool conjb=0); \
|
|
extern T trace2(const NRMat<T> &a, const NRMat<T> &b, bool trb=0); \
|
|
extern T trace2(const NRSMat<T> &a, const NRSMat<T> &b, const bool diagscaled=0);\
|
|
extern void linear_solve(NRMat<T> &a, NRMat<T> *b, double *det=0,int n=0); \
|
|
extern void linear_solve(NRSMat<T> &a, NRMat<T> *b, double *det=0, int n=0); \
|
|
extern void linear_solve(NRMat<T> &a, NRVec<T> &b, double *det=0, int n=0); \
|
|
extern void linear_solve(NRSMat<T> &a, NRVec<T> &b, double *det=0, int n=0); \
|
|
extern void diagonalize(NRMat<T> &a, NRVec<T> &w, const bool eivec=1, const bool corder=1, int n=0, NRMat<T> *b=NULL, const int itype=1); \
|
|
extern void diagonalize(NRSMat<T> &a, NRVec<T> &w, NRMat<T> *v, const bool corder=1, int n=0, NRSMat<T> *b=NULL, const int itype=1);\
|
|
extern void singular_decomposition(NRMat<T> &a, NRMat<T> *u, NRVec<T> &s,\
|
|
NRMat<T> *v, const bool corder=1, int m=0, int n=0);
|
|
|
|
declare_la(double)
|
|
declare_la(complex<double>)
|
|
|
|
// Separate declarations
|
|
//general nonsymmetric matrix and generalized diagonalization
|
|
extern void gdiagonalize(NRMat<double> &a, NRVec<double> &wr, NRVec<double> &wi,
|
|
NRMat<double> *vl, NRMat<double> *vr, const bool corder=1, int n=0, const int sorttype=0, const bool biorthonormalize=0,
|
|
NRMat<double> *b=NULL, NRVec<double> *beta=NULL);
|
|
extern void gdiagonalize(NRMat<double> &a, NRVec< complex<double> > &w,
|
|
NRMat< complex<double> >*vl, NRMat< complex<double> > *vr,
|
|
const bool corder=1, int n=0, const int sorttype=0, const bool biorthonormalize=0,
|
|
NRMat<double> *b=NULL, NRVec<double> *beta=NULL);
|
|
extern NRMat<double> matrixfunction(NRSMat<double> a, double (*f) (double));
|
|
extern NRMat<double> matrixfunction(NRMat<double> a, complex<double> (*f)(const complex<double> &),const bool adjust=0);
|
|
|
|
//functions on matrices
|
|
inline NRMat<double> sqrt(const NRSMat<double> &a) { return matrixfunction(a,&sqrt); }
|
|
inline NRMat<double> log(const NRSMat<double> &a) { return matrixfunction(a,&log); }
|
|
extern NRMat<double> log(const NRMat<double> &a);
|
|
|
|
|
|
extern const NRMat<double> realpart(const NRMat< complex<double> >&);
|
|
extern const NRMat<double> imagpart(const NRMat< complex<double> >&);
|
|
extern const NRMat< complex<double> > realmatrix (const NRMat<double>&);
|
|
extern const NRMat< complex<double> > imagmatrix (const NRMat<double>&);
|
|
|
|
//inverse by means of linear solve, preserving rhs intact
|
|
template<typename T>
|
|
const NRMat<T> inverse(NRMat<T> a, T *det=0)
|
|
{
|
|
#ifdef DEBUG
|
|
if(a.nrows()!=a.ncols()) laerror("inverse() for non-square matrix");
|
|
#endif
|
|
NRMat<T> result(a.nrows(),a.nrows());
|
|
result = (T)1.;
|
|
linear_solve(a, &result, det);
|
|
return result;
|
|
}
|
|
|
|
//general determinant
|
|
template<class MAT>
|
|
const typename LA_traits<MAT>::elementtype determinant(MAT a)//passed by value
|
|
{
|
|
typename LA_traits<MAT>::elementtype det;
|
|
if(a.nrows()!=a.ncols()) laerror("determinant of non-square matrix");
|
|
linear_solve(a,NULL,&det);
|
|
return det;
|
|
}
|
|
|
|
//general determinant destructive on input
|
|
template<class MAT>
|
|
const typename LA_traits<MAT>::elementtype determinant_destroy(MAT &a) //passed by reference
|
|
{
|
|
typename LA_traits<MAT>::elementtype det;
|
|
if(a.nrows()!=a.ncols()) laerror("determinant of non-square matrix");
|
|
linear_solve(a,NULL,&det);
|
|
return det;
|
|
}
|
|
|
|
//general submatrix, INDEX will typically be NRVec<int> or even int*
|
|
//NOTE: in order to check consistency between nrows and rows in rows is a NRVec
|
|
//some advanced metaprogramming would be necessary
|
|
//application: e.g. ignoresign=true, equalsigns=true, indexshift= -1 ... elements of Slater overlaps for RHF
|
|
|
|
template<class MAT, class INDEX>
|
|
const NRMat<typename LA_traits<MAT>::elementtype> submatrix(const MAT a, const int nrows, const INDEX rows, const int ncols, const INDEX cols, int indexshift=0, bool ignoresign=false, bool equalsigns=false)
|
|
{
|
|
NRMat<typename LA_traits<MAT>::elementtype> r(nrows,ncols);
|
|
|
|
if(equalsigns) //make the element zero if signs of both indices are opposite
|
|
{
|
|
if(ignoresign)
|
|
{
|
|
for(int i=0; i<nrows; ++i)
|
|
for(int j=0; j<ncols; ++j)
|
|
r(i,j) = rows[i]*cols[j]<0?0.:a(abs(rows[i])+indexshift,abs(cols[j])+indexshift);
|
|
}
|
|
else
|
|
{
|
|
for(int i=0; i<nrows; ++i)
|
|
for(int j=0; j<ncols; ++j)
|
|
r(i,j) = rows[i]*cols[j]<0?0.:a(rows[i]+indexshift,cols[j]+indexshift);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(ignoresign)
|
|
{
|
|
for(int i=0; i<nrows; ++i)
|
|
for(int j=0; j<ncols; ++j)
|
|
r(i,j) = a(abs(rows[i])+indexshift,abs(cols[j])+indexshift);
|
|
}
|
|
else
|
|
{
|
|
for(int i=0; i<nrows; ++i)
|
|
for(int j=0; j<ncols; ++j)
|
|
r(i,j) = a(rows[i]+indexshift,cols[j]+indexshift);
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
//auxiliary routine to adjust eigenvectors to guarantee real logarithm
|
|
extern void adjustphases(NRMat<double> &v);
|
|
|
|
#endif
|