267 lines
7.4 KiB
C++
267 lines
7.4 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2008 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef _davidson_h
|
|
#define _davidson_h
|
|
#include "vec.h"
|
|
#include "smat.h"
|
|
#include "mat.h"
|
|
#include "sparsemat.h"
|
|
#include "nonclass.h"
|
|
#include "auxstorage.h"
|
|
|
|
namespace LA {
|
|
|
|
//Davidson diagonalization of real symmetric matrix (modified Lanczos)
|
|
|
|
//matrix can be any class which has nrows(), ncols(), diagonalof(), issymmetric(), and gemv() available
|
|
//does not even have to be explicitly stored - direct CI
|
|
//therefore the whole implementation must be a template in a header
|
|
//Note that for efficiency in a direct CI case the diagonalof() should cache its result
|
|
|
|
|
|
//@@@options: left eigenvectors by matrix transpose, overridesymmetric (for nrmat)
|
|
//@@@small matrix gdiagonalize - shift complex roots up (option to gdiagonalize?)
|
|
//@@@test gdiagonalize whether it sorts the roots and what for complex ones
|
|
//@@@implement left eigenvectors for nonsymmetric case
|
|
|
|
|
|
//Davidson algorithm: J. Comp. Phys. 17:817 (1975)
|
|
|
|
|
|
template <typename T, typename Matrix>
|
|
extern void davidson(const Matrix &bigmat, NRVec<T> &eivals, NRVec<T> *eivecs, const char *eivecsfile,
|
|
int nroots=1, const bool verbose=0, const double eps=1e-6,
|
|
const bool incore=1, int maxit=100, const int maxkrylov = 500,
|
|
void (*initguess)(NRVec<T> &)=NULL)
|
|
{
|
|
bool flag=0;
|
|
int n=bigmat.nrows();
|
|
if ( n!= (int)bigmat.ncols()) laerror("non-square matrix in davidson");
|
|
if(eivals.size()<nroots) laerror("too small eivals dimension in davidson");
|
|
|
|
NRVec<T> vec1(n),vec2(n);
|
|
NRMat<T> smallH(maxkrylov,maxkrylov),smallS(maxkrylov,maxkrylov),smallV;
|
|
NRVec<T> r(maxkrylov);
|
|
NRVec<T> *v0,*v1;
|
|
AuxStorage<T> *s0,*s1;
|
|
|
|
if(incore)
|
|
{
|
|
v0 = new NRVec<T>[maxkrylov];
|
|
v1 = new NRVec<T>[maxkrylov];
|
|
}
|
|
else
|
|
{
|
|
s0 = new AuxStorage<T>;
|
|
s1 = new AuxStorage<T>;
|
|
}
|
|
|
|
int i,j;
|
|
|
|
if(maxkrylov<maxit) maxit=maxkrylov;
|
|
if(nroots>=maxkrylov) nroots =maxkrylov-1;
|
|
int nroot=0;
|
|
int oldnroot;
|
|
smallS=0;
|
|
smallH=0;
|
|
|
|
|
|
//default guess based on lowest diagonal element of the matrix
|
|
if(initguess) initguess(vec1);
|
|
else
|
|
{
|
|
const T *diagonal = bigmat.diagonalof(vec2,false,true);
|
|
T t=1e100; int i,j;
|
|
vec1=0;
|
|
for(i=0, j= -1; i<n; ++i) if(diagonal[i]<t) {t=diagonal[i]; j=i;}
|
|
vec1[j]=1;
|
|
}
|
|
|
|
//init Krylov matrices
|
|
bigmat.gemv(0,vec2,'n',1,vec1); //avoid bigmat.operator*(vec), since that needs to allocate another n-sized vector
|
|
smallH(0,0) = vec1*vec2;
|
|
smallS(0,0) = vec1*vec1;
|
|
int krylovsize = 0;
|
|
if(incore) v0[0]=vec1; else s0->put(vec1,0);
|
|
if(incore) v1[0]=vec2; else s1->put(vec2,0);
|
|
|
|
|
|
//iterative Davidson loop
|
|
int it;
|
|
for(it=0; it<maxit; ++it)
|
|
{
|
|
if(it>0) //if this is the first iteration just need to diagonalise the matrix
|
|
{
|
|
//update reduced overlap matrix
|
|
if(incore) v0[krylovsize]=vec1; else s0->put(vec1,krylovsize);
|
|
for(j=0; j<krylovsize; ++j)
|
|
{
|
|
if(!incore) s0->get(vec2,j);
|
|
smallS(krylovsize,j) = smallS(j,krylovsize) = vec1*(incore?v0[j]:vec2);
|
|
}
|
|
smallS(krylovsize,krylovsize) = vec1*vec1;
|
|
bigmat.gemv(0,vec2,'n',1,vec1);
|
|
if(incore) v1[krylovsize]=vec2; else s1->put(vec2,krylovsize);
|
|
|
|
//update reduced hamiltonian matrix
|
|
smallH(krylovsize,krylovsize) = vec1*vec2;
|
|
for(j=0; j<krylovsize; ++j)
|
|
{
|
|
if(!incore) s0->get(vec1,j);
|
|
smallH(j,krylovsize) = (incore?v0[j]:vec1)*vec2;
|
|
if(bigmat.issymmetric()) smallH(krylovsize,j) = smallH(j,krylovsize);
|
|
}
|
|
if(!bigmat.issymmetric())
|
|
{
|
|
if(!incore) s0->get(vec1,krylovsize);
|
|
for(j=0; j<krylovsize; ++j)
|
|
{
|
|
if(!incore) s1->get(vec2,j);
|
|
smallH(krylovsize,j) = incore? v1[j]*v0[krylovsize] :vec1*vec2;
|
|
}
|
|
}
|
|
}
|
|
smallV=smallH;
|
|
NRMat<T> smallSwork=smallS;
|
|
if(bigmat.issymmetric())
|
|
diagonalize(smallV,r,1,1,krylovsize+1,&smallSwork,1); //for symmetric matrix they have already been sorted to ascending order in lapack
|
|
else
|
|
{
|
|
NRVec<T> ri(krylovsize+1),beta(krylovsize+1);
|
|
NRMat<T> scratch;
|
|
scratch=smallV;
|
|
gdiagonalize(scratch, r, ri,NULL, &smallV, 1, krylovsize+1, 2, 0, &smallSwork, &beta);
|
|
for(int i=0; i<=krylovsize; ++i) {r[i]/=beta[i]; ri[i]/=beta[i];}
|
|
}
|
|
|
|
T eival_n=r[nroot];
|
|
oldnroot=nroot;
|
|
typename LA_traits<T>::normtype test=std::abs(smallV(krylovsize,nroot));
|
|
if(test<eps) nroot++;
|
|
if(it==0) nroot = 0;
|
|
for(int iroot=0; iroot<=std::min(krylovsize,nroots-1); ++iroot)
|
|
{
|
|
test = std::abs(smallV(krylovsize,iroot));
|
|
if(test>eps) nroot=std::min(nroot,iroot);
|
|
if(verbose && iroot<=std::max(oldnroot,nroot))
|
|
{
|
|
std::cout <<"Davidson: iter="<<it <<" dim="<<krylovsize<<" root="<<iroot<<" energy="<<r[iroot]<<"\n";
|
|
std::cout.flush();
|
|
}
|
|
}
|
|
|
|
if(verbose && oldnroot!=nroot) {std::cout <<"root no. "<<oldnroot<<" converged\n"; std::cout.flush();}
|
|
if (nroot>=nroots) goto converged;
|
|
if (it==maxit-1) break; //not converged
|
|
|
|
if (krylovsize==maxkrylov) //restart, krylov space exceeded
|
|
{
|
|
if(nroot!=0) {flag=1; goto finished;}
|
|
smallH=0;
|
|
smallS=0;
|
|
vec1=0;
|
|
for(i=0; i<=krylovsize; ++i)
|
|
{
|
|
if(!incore) s0->get(vec2,i);
|
|
vec1.axpy(smallV(i,0),incore?v0[i]:vec2);
|
|
}
|
|
s0->put(vec1,0);
|
|
vec1.normalize();
|
|
krylovsize = 0;
|
|
continue;
|
|
}
|
|
|
|
//generate the update vector
|
|
vec1=0;
|
|
for(j=0; j<=krylovsize; ++j)
|
|
{
|
|
if(!incore) s0->get(vec2,j);
|
|
vec1.axpy(-r[nroot]*smallV(j,nroot),incore?v0[j]:vec2);
|
|
if(!incore) s1->get(vec2,j);
|
|
vec1.axpy(smallV(j,nroot),incore?v1[j]:vec2);
|
|
}
|
|
|
|
{
|
|
const T *diagonal = bigmat.diagonalof(vec2,false,true);
|
|
eival_n = r[nroot];
|
|
for(i=0; i<n; ++i)
|
|
{
|
|
T denom = diagonal[i] - eival_n;
|
|
denom = denom<0?-std::max(0.1,std::abs(denom)):std::max(0.1,std::abs(denom));
|
|
vec1[i] /= denom;
|
|
}
|
|
}
|
|
|
|
//orthogonalise to previous vectors
|
|
vec1.normalize();
|
|
for(j=0; j<=krylovsize; ++j)
|
|
{
|
|
typename LA_traits<T>::normtype vnorm;
|
|
if(!incore) s0->get(vec2,j);
|
|
do {
|
|
T ab = vec1*(incore?v0[j]:vec2) /smallS(j,j);
|
|
vec1.axpy(-ab,incore?v0[j]:vec2);
|
|
vnorm = vec1.norm();
|
|
vec1 *= (1./vnorm);
|
|
} while (vnorm<0.99);
|
|
}
|
|
|
|
//here it is possible to apply some purification procedure if the eivector has to fulfill other conditions
|
|
//vec1.normalize(); //after the purification
|
|
|
|
++krylovsize; //enlarge Krylov space
|
|
}
|
|
flag=1;
|
|
goto finished;
|
|
|
|
converged:
|
|
AuxStorage<typename LA_traits<T>::elementtype> *ev;
|
|
if(eivecsfile) ev = new AuxStorage<typename LA_traits<T>::elementtype>(eivecsfile);
|
|
if(verbose) {std::cout << "Davidson converged in "<<it<<" iterations.\n"; std::cout.flush();}
|
|
for(nroot=0; nroot<nroots; ++nroot)
|
|
{
|
|
eivals[nroot]=r[nroot];
|
|
if(eivecs)
|
|
{
|
|
vec1=0;
|
|
for(j=0; j<=krylovsize; ++j )
|
|
{
|
|
if(!incore) s0->get(vec2,j);
|
|
vec1.axpy(smallV(j,nroot),incore?v0[j]:vec2);
|
|
}
|
|
vec1.normalize();
|
|
if(eivecs) eivecs[nroot]|=vec1;
|
|
if(eivecsfile)
|
|
{
|
|
ev->put(vec1,nroot);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(eivecsfile) delete ev;
|
|
|
|
finished:
|
|
if(incore) {delete[] v0; delete[] v1;}
|
|
else {delete s0; delete s1;}
|
|
|
|
if(flag) laerror("no convergence in davidson");
|
|
}
|
|
|
|
}//namespace
|
|
#endif
|