365 lines
11 KiB
C++
365 lines
11 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2008 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef _SPARSESMAT_H_
|
|
#define _SPARSESMAT_H_
|
|
|
|
#include <string>
|
|
#include <cmath>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include "la_traits.h"
|
|
#include "sparsemat.h"
|
|
#include "vec.h"
|
|
#include "mat.h"
|
|
#include "smat.h"
|
|
|
|
#include <map>
|
|
#include <list>
|
|
|
|
namespace LA {
|
|
|
|
//symmetric sparse matrix class with a representation for efficient exponentiatiation
|
|
//in particular we need a unitary symmetric complex matrix as exp(iH) with H real symmetric
|
|
//indices are counted from zero
|
|
|
|
|
|
template <typename T>
|
|
class SparseSMat
|
|
{
|
|
protected:
|
|
SPMatindex nn;
|
|
std::map<SPMatindex,T> **v;
|
|
int *count;
|
|
public:
|
|
SparseSMat() : nn(0), v(NULL), count(NULL) {};
|
|
explicit SparseSMat(const SPMatindex n); //prevent double -> int -> SparseSMat
|
|
SparseSMat(const SparseSMat &rhs);
|
|
explicit SparseSMat(const SparseMat<T> &rhs);
|
|
explicit SparseSMat(const NRSMat<T> &rhs);
|
|
SparseSMat & operator=(const SparseSMat &rhs);
|
|
void copyonwrite();
|
|
void resize(const SPMatindex n);
|
|
void clear() {resize(nn);}
|
|
unsigned long long simplify();
|
|
~SparseSMat();
|
|
inline int getcount() const {return count?*count:0;}
|
|
SparseSMat & operator*=(const T &a); //multiply by a scalar
|
|
inline const SparseSMat operator*(const T &rhs) const {return SparseSMat(*this) *= rhs;}
|
|
inline const SparseSMat operator+(const T &rhs) const {return SparseSMat(*this) += rhs;}
|
|
inline const SparseSMat operator-(const T &rhs) const {return SparseSMat(*this) -= rhs;}
|
|
inline const SparseSMat operator+(const SparseSMat &rhs) const {return SparseSMat(*this) += rhs;}
|
|
inline const SparseSMat operator-(const SparseSMat &rhs) const {return SparseSMat(*this) -= rhs;}
|
|
SparseSMat & operator=(const T &a); //assign a to diagonal
|
|
SparseSMat & operator+=(const T &a); //assign a to diagonal
|
|
SparseSMat & operator-=(const T &a); //assign a to diagonal
|
|
void axpy(const T alpha, const SparseSMat &x, const bool transp=0); // this+= a*x
|
|
inline SparseSMat & operator+=(const SparseSMat &rhs) {axpy((T)1,rhs); return *this;};
|
|
inline SparseSMat & operator-=(const SparseSMat &rhs) {axpy((T)-1,rhs); return *this;};
|
|
void gemv(const T beta, NRVec<T> &r, const char trans, const T alpha, const NRVec<T> &x) const;
|
|
typename LA_traits<T>::normtype norm(const T scalar=(T)0) const;
|
|
inline const SparseSMat operator*(const SparseSMat &rhs) const {SparseSMat<T> r(nn); r.gemm(0,*this,'n',rhs,'n',1); return r;}; //!!!NOT A GENERAL ROUTINE, JUST FOR THE CASES WHEN THE RESULT STAYS SYMMETRIC
|
|
void gemm(const T beta, const SparseSMat &a, const char transa, const SparseSMat &b, const char transb, const T alpha); //this := alpha*op( A )*op( B ) + beta*this !!!NOT A GENERAL ROUTINE, JUST FOR THE CASES WHEN THE RESULT STAYS SYMMETRIC
|
|
inline void add(const SPMatindex n, const SPMatindex m, const T elem, const bool both=true);
|
|
inline unsigned long long length() {return simplify();};
|
|
void transposeme() const {};
|
|
int nrows() const {return nn;}
|
|
int ncols() const {return nn;}
|
|
|
|
class iterator {//not efficient, just for output to ostreams
|
|
private:
|
|
matel<T> *p;
|
|
matel<T> my;
|
|
SPMatindex row;
|
|
typename std::map<SPMatindex,T>::iterator *col;
|
|
typename std::map<SPMatindex,T>::iterator mycol;
|
|
SPMatindex mynn;
|
|
std::map<SPMatindex,T> **myv;
|
|
|
|
|
|
public:
|
|
//compiler-generated iterator & operator=(const iterator &rhs);
|
|
//compiler-generated iterator(const iterator &rhs);
|
|
iterator(): p(NULL),row(0),col(NULL),mynn(0),myv(NULL) {};
|
|
iterator(const SparseSMat &rhs) : mynn(rhs.nn), myv(rhs.v), col(NULL) {row=0; p= &my; operator++();}
|
|
iterator operator++() {
|
|
if(col) //finish column list
|
|
{
|
|
++mycol;
|
|
if(mycol != myv[row]->end())
|
|
{
|
|
p->row = row;
|
|
p->col = mycol->first;
|
|
p->elem = mycol->second;
|
|
return *this;
|
|
}
|
|
else
|
|
{
|
|
col=NULL;
|
|
++row; if(row==mynn) {p=NULL; return *this;} //end()
|
|
}
|
|
}
|
|
nextrow:
|
|
while(myv[row]==NULL) {++row; if(row==mynn) {p=NULL; return *this;}} //end()
|
|
|
|
//we are at next nonempty row
|
|
col = &mycol;
|
|
mycol = myv[row]->begin();
|
|
if(mycol == myv[row]->end()) {col=NULL;
|
|
++row;
|
|
if(row==mynn) {p=NULL; return *this;} else goto nextrow;
|
|
}
|
|
//first column of new row
|
|
p->row = row;
|
|
p->col = mycol->first;
|
|
p->elem = mycol->second;
|
|
return *this;
|
|
};
|
|
iterator(matel<T> *q) {p=q; col=NULL;}//just for end()
|
|
//compiler-generated ~iterator() {};
|
|
bool operator!=(const iterator &rhs) const {return p!=rhs.p;} //only for comparison with end()
|
|
bool operator==(const iterator &rhs) const {return p==rhs.p;} //only for comparison with end()
|
|
matel<T> & operator*() const {return *p;}
|
|
matel<T> * operator->() const {return p;}
|
|
bool notend() const {return (bool)p;};
|
|
};
|
|
iterator begin() const {return iterator(*this);}
|
|
iterator end() const {return iterator(NULL);}
|
|
};
|
|
|
|
template <typename T>
|
|
SparseSMat<T>::SparseSMat(const SPMatindex n)
|
|
:nn(n),
|
|
count(new int(1))
|
|
{
|
|
v= new std::map<SPMatindex,T> * [n];
|
|
memset(v,0,nn*sizeof(std::map<SPMatindex,T> *));
|
|
}
|
|
|
|
template <typename T>
|
|
SparseSMat<T>::SparseSMat(const NRSMat<T> &rhs)
|
|
:nn(rhs.nrows()),
|
|
count(new int(1))
|
|
{
|
|
v= new std::map<SPMatindex,T> * [nn];
|
|
memset(v,0,nn*sizeof(std::map<SPMatindex,T> *));
|
|
int i,j;
|
|
for(i=0; i<nn; ++i) for(j=0; j<=i; ++j) if(std::abs(rhs(i,j))>SPARSEEPSILON) (*this).add(i,j,rhs(i,j),true);
|
|
}
|
|
|
|
template <typename T>
|
|
SparseSMat<T>::SparseSMat(const SparseSMat &rhs)
|
|
{
|
|
v = rhs.v;
|
|
nn = rhs.nn;
|
|
count = rhs.count;
|
|
if(count) (*count)++;
|
|
}
|
|
|
|
//NRSMat from SparseSMat
|
|
#define nn2 (nn*(nn+1)/2)
|
|
template <typename T>
|
|
NRSMat<T>::NRSMat(const SparseSMat<T> &rhs)
|
|
: nn(rhs.nrows())
|
|
{
|
|
count = new int(1);
|
|
v=new T[nn2];
|
|
memset(v,0,nn2*sizeof(T));
|
|
typename SparseSMat<T>::iterator p(rhs);
|
|
for(; p.notend(); ++p) if(p->row <= p->col) (*this)(p->row,p->col)=p->elem;
|
|
}
|
|
#undef nn2
|
|
|
|
|
|
template <typename T>
|
|
SparseSMat<T>::~SparseSMat()
|
|
{
|
|
if(!count) return;
|
|
if(--(*count) <= 0) {
|
|
if(v)
|
|
{
|
|
for(SPMatindex i=0; i<nn; ++i) if(v[i]) delete v[i];
|
|
delete[] (v);
|
|
}
|
|
delete count;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void SparseSMat<T>::resize(const SPMatindex n)
|
|
{
|
|
if(!count)
|
|
{
|
|
if(n==0) return;
|
|
count = new int(1);
|
|
nn=n;
|
|
v= new std::map<SPMatindex,T> * [nn];
|
|
for(SPMatindex i=0; i<nn; ++i) v[i]=NULL;
|
|
return;
|
|
}
|
|
|
|
if(*count > 1) //it was shared
|
|
{
|
|
(*count)--;
|
|
if(n)
|
|
{
|
|
count = new int(1);
|
|
nn=n;
|
|
v= new std::map<SPMatindex,T> * [nn];
|
|
for(SPMatindex i=0; i<nn; ++i) v[i]=NULL;
|
|
}
|
|
else {v=NULL; nn=0; count=NULL;}
|
|
}
|
|
else //it was not shared
|
|
{
|
|
//delete all trees
|
|
for(SPMatindex i=0; i<nn; ++i) if(v[i]) {delete v[i]; v[i]=NULL;}
|
|
if(n!=nn)
|
|
{
|
|
nn=n;
|
|
for(SPMatindex i=0; i<nn; ++i) v[i]=NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
SparseSMat<T> & SparseSMat<T>::operator=(const SparseSMat &rhs)
|
|
{
|
|
if (this != &rhs)
|
|
{
|
|
if(count)
|
|
if(--(*count) == 0)
|
|
{
|
|
if(v)
|
|
{
|
|
for(SPMatindex i=0; i<nn; ++i) if(v[i]) delete v[i];
|
|
delete[] (v);
|
|
}
|
|
delete count;
|
|
}
|
|
v = rhs.v;
|
|
nn = rhs.nn;
|
|
count = rhs.count;
|
|
if(count) (*count)++;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void SparseSMat<T>::copyonwrite()
|
|
{
|
|
if(!count) laerror("SparseSmat::copyonwrite() of an undefined object");
|
|
if(*count > 1)
|
|
{
|
|
(*count)--;
|
|
count = new int;
|
|
*count = 1;
|
|
typename std::map<SPMatindex,T> **newv= new std::map<SPMatindex,T> * [nn];
|
|
for(SPMatindex i=0; i<nn; ++i) if(v[i])
|
|
newv[i]= new typename std::map<SPMatindex,T>(*(v[i])); //deep copy of each map
|
|
else
|
|
newv[i]= NULL;
|
|
v = newv;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void SparseSMat<T>::add(const SPMatindex n, const SPMatindex m, const T elem, const bool both)
|
|
{
|
|
#ifdef DEBUG
|
|
if(n>=nn || m>=nn) laerror("illegal index in SparseSMat::add()");
|
|
#endif
|
|
if(!v[n]) v[n] = new std::map<SPMatindex,T>;
|
|
|
|
typename std::map<SPMatindex,T>::iterator p;
|
|
|
|
p= v[n]->find(m);
|
|
if(p!=v[n]->end()) p->second+=elem; else (*v[n])[m] = elem;
|
|
if(n!=m && both) //add also transposed
|
|
{
|
|
if(!v[m]) v[m] = new std::map<SPMatindex,T>;
|
|
p= v[m]->find(n);
|
|
if(p!=v[m]->end()) p->second+=elem; else (*v[m])[n] = elem;
|
|
}
|
|
//addition can lead to zero, but do not treat it now, make a simplify
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
unsigned long long SparseSMat<T>::simplify()
|
|
{
|
|
unsigned long long count=0;
|
|
for(SPMatindex i=0; i<nn; ++i) if(v[i])
|
|
{
|
|
//check for zero elements and erase them from the list
|
|
//build a list since we are not sure whether erase from within the traversal loop is safe
|
|
std::list<SPMatindex> l;
|
|
typename std::map<SPMatindex,T>::iterator p;
|
|
for(p=v[i]->begin(); p!=v[i]->end(); ++p)
|
|
if(std::abs(p->second) < SPARSEEPSILON) l.push_front(p->first); else ++count;
|
|
typename std::list<SPMatindex>::iterator q;
|
|
for(q=l.begin(); q!=l.end(); ++q) v[i]->erase(*q);
|
|
if(v[i]->size() == 0) {delete v[i]; v[i]=NULL;}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
template <typename T>
|
|
std::ostream & operator<<(std::ostream &s, const SparseSMat<T> &x)
|
|
{
|
|
SPMatindex n;
|
|
|
|
n = x.nrows();
|
|
s << n << " "<< n<< std::endl;
|
|
|
|
typename SparseSMat<T>::iterator p(x);
|
|
for(; p.notend(); ++p) s << (int)p->row << ' ' << (int)p->col << ' ' << (typename LA_traits_io<T>::IOtype) p->elem << '\n';
|
|
s << "-1 -1\n";
|
|
return s;
|
|
}
|
|
|
|
template <class T>
|
|
std::istream& operator>>(std::istream &s, SparseSMat<T> &x)
|
|
{
|
|
SPMatindex n,m;
|
|
long i,j;
|
|
s >> n >> m;
|
|
if(n!=m) laerror("SparseSMat must be square");
|
|
x.resize(n);
|
|
s >> i >> j;
|
|
typename LA_traits_io<T>::IOtype tmp;
|
|
while(i>=0 && j>=0)
|
|
{
|
|
s>>tmp;
|
|
x.add(i,j,tmp,false);
|
|
s >> i >> j;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
}//namespace
|
|
#endif //_SPARSESMAT_H_
|