LA_library/simple.h

155 lines
4.1 KiB
C++

/*
LA: linear algebra C++ interface library
Copyright (C) 2021 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//this header defines some simple algorithms independent of external libraries
//using small runtime-constant size matrices and vectors
//particularly intended to embedded computers
//it should be compilable separately from LA as well as being a part of LA
#ifndef _SIMPLE_H_
#define _SIMPLE_H_
#include <stdlib.h>
#ifndef AVOID_STDSTREAM
#include <iostream>
#endif
#include <string.h>
#include <math.h>
#include <stdio.h>
namespace LA_Simple {
//a simple gauss elimination as a template also for larger-size matrices in form of C-style arrays
#define SWAP(a,b) {T temp=(a);(a)=(b);(b)=temp;}
template<typename T, int n, int m>
T simple_gaussj(T (&a)[n][n],T (&b)[m][n]) //returns determinant, m is number of rhs to solve, inverse in a, solution in b
{
int indxc[n],indxr[n],ipiv[n];
int i,icol,irow,j,k,l,ll;
T det,big,dum,pivinv;
det=1;
for (j=0;j<n;j++) ipiv[j]=0;
for (i=0;i<n;i++) {
big=0.0;
for (j=0;j<n;j++)
if (ipiv[j] != 1)
for (k=0;k<n;k++) {
if (ipiv[k] == 0) {
if (abs(a[j][k]) >= big) {
big=abs(a[j][k]);
irow=j;
icol=k;
}
} else if (ipiv[k] > 1) {return 0;}
}
++(ipiv[icol]);
if (irow != icol) {
det = (-det);
for (l=0;l<n;l++) SWAP(a[irow][l],a[icol][l])
for (l=0;l<m;l++) SWAP(b[l][irow],b[l][icol])
}
indxr[i]=irow;
indxc[i]=icol;
if (a[icol][icol] == 0) {return 0;}
pivinv=1/a[icol][icol];
det *= a[icol][icol];
a[icol][icol]=1.0;
for (l=0;l<n;l++) a[icol][l] *= pivinv;
for (l=0;l<m;l++) b[l][icol] *= pivinv;
for (ll=0;ll<n;ll++)
if (ll != icol) {
dum=a[ll][icol];
a[ll][icol]=0.0;
for (l=0;l<n;l++) a[ll][l] -= a[icol][l]*dum;
for (l=0;l<m;l++) b[l][ll] -= b[l][icol]*dum;
}
}
for (l=n-1;l>=0;l--) {
if (indxr[l] != indxc[l])
for (k=0;k<n;k++)
SWAP(a[k][indxr[l]],a[k][indxc[l]]);
}
return det;
}
#undef SWAP
template<typename T, int n>
class simple_linfit {
public:
T fitmat[n][n];
T rhsmat[1][n];
T fitcoef[n];
int npoints;
void clear(bool keepresults=false) {npoints=0; memset(&fitmat[0][0],0,n*n*sizeof(T)); memset(&rhsmat[0][0],0,1*n*sizeof(T)); if(!keepresults) memset(&fitcoef[0],0,n*sizeof(T));};
simple_linfit() {clear(false);}
void input(const T (&funcs)[n], const T y)
{
++npoints;
for(int i=0; i<n; ++i)
{
for(int j=0; j<=i; ++j)
{
T tmp=funcs[i]*funcs[j];
fitmat[i][j] += tmp;
if(i!=j) fitmat[j][i] += tmp;
}
rhsmat[0][i] += funcs[i]*y;
}
}
T solve(bool preserve=false)
{
//for(int i=0; i<n; ++i) {for(int j=0; j<n; ++j) std::cout <<fitmat[i][j]<<" "; std::cout<<std::endl;}
//for(int j=0; j<n; ++j) std::cout <<rhsmat[0][j]<<" "; std::cout<<std::endl;
if(npoints<n) return 0;
if(preserve)
{
T fitwork[n][n];memcpy(fitwork,fitmat,n*n*sizeof(T));
T rhswork[1][n];memcpy(rhswork,rhsmat,1*n*sizeof(T));
T det = simple_gaussj(fitwork,rhswork);
memcpy(&fitcoef[0],&rhswork[0][0],n*sizeof(T));
return det;
}
T det = simple_gaussj(fitmat,rhsmat);
memcpy(&fitcoef[0],&rhsmat[0][0],n*sizeof(T));
clear(true);
return det;
}
};
//stream I/O
#ifndef AVOID_STDSTREAM
template <typename T, int n>
std::ostream& operator<<(std::ostream &o, const simple_linfit<T,n> &f)
{
for(int i=0; i<n; ++i) o<<f.fitcoef[i]<<" ";
return o;
}
#endif
}//namespace
#endif /* _SIMPLE_H_ */