193 lines
7.3 KiB
C++
193 lines
7.3 KiB
C++
/*
|
|
LA: linear algebra C++ interface library
|
|
Copyright (C) 2024 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
//a simple tensor class with arbitrary symmetry of index subgroups
|
|
//stored in an efficient way
|
|
//presently only a rudimentary implementation
|
|
//presently limited to 2G data size due to NRVec - maybe use a typedef LA_index
|
|
//to uint64_t in the future in vector and matrix classes
|
|
|
|
|
|
#ifndef _TENSOR_H
|
|
#define _TENSOR_H
|
|
|
|
#include <stdint.h>
|
|
#include <cstdarg>
|
|
#include "vec.h"
|
|
#include "miscfunc.h"
|
|
|
|
|
|
namespace LA {
|
|
|
|
|
|
template<typename T>
|
|
class Signedpointer
|
|
{
|
|
T *ptr;
|
|
int sgn;
|
|
public:
|
|
Signedpointer(T *p, int s) : ptr(p),sgn(s) {};
|
|
//dereferencing *ptr should intentionally segfault for sgn==0
|
|
T& operator=(const T rhs) {if(sgn>0) *ptr=rhs; else *ptr = -rhs; return *ptr;}
|
|
T& operator*=(const T rhs) {*ptr *= rhs; return *ptr;}
|
|
T& operator/=(const T rhs) {*ptr /= rhs; return *ptr;}
|
|
T& operator+=(const T rhs) {if(sgn>0) *ptr += rhs; else *ptr -= rhs; return *ptr;}
|
|
T& operator-=(const T rhs) {if(sgn>0) *ptr -= rhs; else *ptr += rhs; return *ptr;}
|
|
};
|
|
|
|
|
|
typedef int LA_index;
|
|
typedef int LA_largeindex;
|
|
|
|
typedef class indexgroup {
|
|
public:
|
|
int number; //number of indices
|
|
int symmetry; //-1 0 or 1
|
|
#ifdef LA_TENSOR_ZERO_OFFSET
|
|
static const LA_index offset = 0; //compiler can optimiza away some computations
|
|
#else
|
|
LA_index offset; //indices start at a general offset
|
|
#endif
|
|
LA_index range; //indices span this range
|
|
} INDEXGROUP;
|
|
|
|
template<>
|
|
class LA_traits<indexgroup> {
|
|
public:
|
|
static bool is_plaindata() {return true;};
|
|
static void copyonwrite(indexgroup& x) {};
|
|
typedef INDEXGROUP normtype;
|
|
static inline void put(int fd, const indexgroup &x, bool dimensions=1) {if(sizeof(indexgroup)!=write(fd,&x,sizeof(indexgroup))) laerror("write error 1 in indexgroup put"); }
|
|
static inline void multiput(int nn, int fd, const indexgroup *x, bool dimensions=1) {if(nn*sizeof(indexgroup)!=write(fd,x,nn*sizeof(indexgroup))) laerror("write error 1 in indexgroup multiiput"); }
|
|
static inline void get(int fd, indexgroup &x, bool dimensions=1) {if(sizeof(indexgroup)!=read(fd,&x,sizeof(indexgroup))) laerror("read error 1 in indexgroup get");}
|
|
static inline void multiget(int nn, int fd, indexgroup *x, bool dimensions=1) {if(nn*sizeof(indexgroup)!=read(fd,x,nn*sizeof(indexgroup))) laerror("read error 1 in indexgroup get");}
|
|
|
|
};
|
|
|
|
|
|
typedef NRVec<LA_index> FLATINDEX; //all indices but in a single vector
|
|
typedef NRVec<NRVec<LA_index> > SUPERINDEX; //all indices in the INDEXGROUP structure
|
|
|
|
|
|
template<typename T>
|
|
class Tensor {
|
|
int myrank;
|
|
NRVec<indexgroup> shape;
|
|
NRVec<LA_largeindex> groupsizes; //group sizes of symmetry index groups (a function of shape but precomputed for efficiency)
|
|
NRVec<LA_largeindex> cumsizes; //cumulative sizes of symmetry index groups (a function of shape but precomputed for efficiency)
|
|
NRVec<T> data;
|
|
|
|
private:
|
|
LA_largeindex index(int *sign, const SUPERINDEX &I) const; //map the tensor indices to the position in data
|
|
LA_largeindex index(int *sign, const FLATINDEX &I) const; //map the tensor indices to the position in data
|
|
LA_largeindex vindex(int *sign, LA_index i1, va_list args) const; //map list of indices to the position in data
|
|
//@@@reversed index
|
|
|
|
public:
|
|
//constructors
|
|
Tensor() : myrank(0) {};
|
|
Tensor(const NRVec<indexgroup> &s) : shape(s), data((int)calcsize()), myrank(calcrank()) {}; //general tensor
|
|
Tensor(const indexgroup &g) {shape.resize(1); shape[0]=g; data.resize(calcsize()); myrank=calcrank();}; //tensor with a single index group
|
|
Tensor(const Tensor &rhs): myrank(rhs.myrank), shape(rhs.shape), groupsizes(rhs.groupsizes), cumsizes(rhs.cumsizes), data(rhs.data) {};
|
|
|
|
void clear() {data.clear();};
|
|
int rank() const {return myrank;};
|
|
int calcrank(); //is computed from shape
|
|
LA_largeindex calcsize(); //set redundant data and return total size
|
|
LA_largeindex size() const {return data.size();};
|
|
void copyonwrite() {shape.copyonwrite(); data.copyonwrite();};
|
|
inline Signedpointer<T> lhs(const SUPERINDEX &I) {int sign; LA_largeindex i=index(&sign,I); return Signedpointer<T>(&data[i],sign);};
|
|
inline T operator()(const SUPERINDEX &I) {int sign; LA_largeindex i=index(&sign,I); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];};
|
|
inline Signedpointer<T> lhs(const FLATINDEX &I) {int sign; LA_largeindex i=index(&sign,I); return Signedpointer<T>(&data[i],sign);};
|
|
inline T operator()(const FLATINDEX &I) {int sign; LA_largeindex i=index(&sign,I); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];};
|
|
inline Signedpointer<T> lhs(LA_index i1...) {va_list args; int sign; LA_largeindex i; va_start(args,i1); i= vindex(&sign, i1,args); return Signedpointer<T>(&data[i],sign); };
|
|
inline T operator()(LA_index i1...) {va_list args; ; int sign; LA_largeindex i; va_start(args,i1); i= vindex(&sign, i1,args); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];};
|
|
|
|
inline Tensor& operator=(const Tensor &rhs) {myrank=rhs.myrank; shape=rhs.shape; groupsizes=rhs.groupsizes; cumsizes=rhs.cumsizes; data=rhs.data; return *this;};
|
|
|
|
inline Tensor& operator*=(const T &a) {data*=a; return *this;};
|
|
inline Tensor operator*(const T &a) const {Tensor r(*this); r *=a; return r;};
|
|
inline Tensor& operator/=(const T &a) {data/=a; return *this;};
|
|
inline Tensor operator/(const T &a) const {Tensor r(*this); r /=a; return r;};
|
|
|
|
void put(int fd) const;
|
|
void get(int fd);
|
|
|
|
//@@@TODO - unwinding to full size in a specified index
|
|
//@@@TODO - contractions - basic and efficient? first contraction in a single index; between a given group+index in group at each tensor
|
|
//@@@ dvojite rekurzivni loopover s callbackem - nebo iterator s funkci next???
|
|
//@@@nebo inverse index function?
|
|
//@@@ stream i/o na zaklade tohoto
|
|
//@@@permuteindexgroups
|
|
//@@@symmetreize a group, antisymmetrize a group, expand a (anti)symmetric grtoup
|
|
//@@@@@@+= -= + - on same shape
|
|
};
|
|
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Tensor<T>:: calcrank()
|
|
{
|
|
int r=0;
|
|
for(int i=0; i<shape.size(); ++i)
|
|
{
|
|
if(shape[i].number==0) laerror("empty index group");
|
|
r+=shape[i].number;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
LA_largeindex Tensor<T>::calcsize()
|
|
{
|
|
groupsizes.resize(shape.size());
|
|
cumsizes.resize(shape.size());
|
|
LA_largeindex s=1;
|
|
for(int i=0; i<shape.size(); ++i)
|
|
{
|
|
if(shape[i].number==0) laerror("empty index group");
|
|
if(shape[i].range==0) return 0;
|
|
cumsizes[i]=s;
|
|
switch(shape[i].symmetry)
|
|
{
|
|
case 0:
|
|
s *= groupsizes[i] = longpow(shape[i].range,shape[i].number);
|
|
break;
|
|
case 1:
|
|
s *= groupsizes[i] = simplicial(shape[i].number,shape[i].range);
|
|
break;
|
|
case -1:
|
|
s *= groupsizes[i] = simplicial(shape[i].number,shape[i].range-shape[i].number+1);
|
|
break;
|
|
default:
|
|
laerror("illegal index group symmetry");
|
|
break;
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
}//namespace
|
|
#endif
|