LA_library/tensor.h
2024-04-06 06:37:17 +02:00

193 lines
7.3 KiB
C++

/*
LA: linear algebra C++ interface library
Copyright (C) 2024 Jiri Pittner <jiri.pittner@jh-inst.cas.cz> or <jiri@pittnerovi.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//a simple tensor class with arbitrary symmetry of index subgroups
//stored in an efficient way
//presently only a rudimentary implementation
//presently limited to 2G data size due to NRVec - maybe use a typedef LA_index
//to uint64_t in the future in vector and matrix classes
#ifndef _TENSOR_H
#define _TENSOR_H
#include <stdint.h>
#include <cstdarg>
#include "vec.h"
#include "miscfunc.h"
namespace LA {
template<typename T>
class Signedpointer
{
T *ptr;
int sgn;
public:
Signedpointer(T *p, int s) : ptr(p),sgn(s) {};
//dereferencing *ptr should intentionally segfault for sgn==0
T& operator=(const T rhs) {if(sgn>0) *ptr=rhs; else *ptr = -rhs; return *ptr;}
T& operator*=(const T rhs) {*ptr *= rhs; return *ptr;}
T& operator/=(const T rhs) {*ptr /= rhs; return *ptr;}
T& operator+=(const T rhs) {if(sgn>0) *ptr += rhs; else *ptr -= rhs; return *ptr;}
T& operator-=(const T rhs) {if(sgn>0) *ptr -= rhs; else *ptr += rhs; return *ptr;}
};
typedef int LA_index;
typedef int LA_largeindex;
typedef class indexgroup {
public:
int number; //number of indices
int symmetry; //-1 0 or 1
#ifdef LA_TENSOR_ZERO_OFFSET
static const LA_index offset = 0; //compiler can optimiza away some computations
#else
LA_index offset; //indices start at a general offset
#endif
LA_index range; //indices span this range
} INDEXGROUP;
template<>
class LA_traits<indexgroup> {
public:
static bool is_plaindata() {return true;};
static void copyonwrite(indexgroup& x) {};
typedef INDEXGROUP normtype;
static inline void put(int fd, const indexgroup &x, bool dimensions=1) {if(sizeof(indexgroup)!=write(fd,&x,sizeof(indexgroup))) laerror("write error 1 in indexgroup put"); }
static inline void multiput(int nn, int fd, const indexgroup *x, bool dimensions=1) {if(nn*sizeof(indexgroup)!=write(fd,x,nn*sizeof(indexgroup))) laerror("write error 1 in indexgroup multiiput"); }
static inline void get(int fd, indexgroup &x, bool dimensions=1) {if(sizeof(indexgroup)!=read(fd,&x,sizeof(indexgroup))) laerror("read error 1 in indexgroup get");}
static inline void multiget(int nn, int fd, indexgroup *x, bool dimensions=1) {if(nn*sizeof(indexgroup)!=read(fd,x,nn*sizeof(indexgroup))) laerror("read error 1 in indexgroup get");}
};
typedef NRVec<LA_index> FLATINDEX; //all indices but in a single vector
typedef NRVec<NRVec<LA_index> > SUPERINDEX; //all indices in the INDEXGROUP structure
template<typename T>
class Tensor {
int myrank;
NRVec<indexgroup> shape;
NRVec<LA_largeindex> groupsizes; //group sizes of symmetry index groups (a function of shape but precomputed for efficiency)
NRVec<LA_largeindex> cumsizes; //cumulative sizes of symmetry index groups (a function of shape but precomputed for efficiency)
NRVec<T> data;
private:
LA_largeindex index(int *sign, const SUPERINDEX &I) const; //map the tensor indices to the position in data
LA_largeindex index(int *sign, const FLATINDEX &I) const; //map the tensor indices to the position in data
LA_largeindex vindex(int *sign, LA_index i1, va_list args) const; //map list of indices to the position in data
//@@@reversed index
public:
//constructors
Tensor() : myrank(0) {};
Tensor(const NRVec<indexgroup> &s) : shape(s), data((int)calcsize()), myrank(calcrank()) {}; //general tensor
Tensor(const indexgroup &g) {shape.resize(1); shape[0]=g; data.resize(calcsize()); myrank=calcrank();}; //tensor with a single index group
Tensor(const Tensor &rhs): myrank(rhs.myrank), shape(rhs.shape), groupsizes(rhs.groupsizes), cumsizes(rhs.cumsizes), data(rhs.data) {};
void clear() {data.clear();};
int rank() const {return myrank;};
int calcrank(); //is computed from shape
LA_largeindex calcsize(); //set redundant data and return total size
LA_largeindex size() const {return data.size();};
void copyonwrite() {shape.copyonwrite(); data.copyonwrite();};
inline Signedpointer<T> lhs(const SUPERINDEX &I) {int sign; LA_largeindex i=index(&sign,I); return Signedpointer<T>(&data[i],sign);};
inline T operator()(const SUPERINDEX &I) {int sign; LA_largeindex i=index(&sign,I); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];};
inline Signedpointer<T> lhs(const FLATINDEX &I) {int sign; LA_largeindex i=index(&sign,I); return Signedpointer<T>(&data[i],sign);};
inline T operator()(const FLATINDEX &I) {int sign; LA_largeindex i=index(&sign,I); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];};
inline Signedpointer<T> lhs(LA_index i1...) {va_list args; int sign; LA_largeindex i; va_start(args,i1); i= vindex(&sign, i1,args); return Signedpointer<T>(&data[i],sign); };
inline T operator()(LA_index i1...) {va_list args; ; int sign; LA_largeindex i; va_start(args,i1); i= vindex(&sign, i1,args); if(sign==0) return 0; return sign>0 ?data[i] : -data[i];};
inline Tensor& operator=(const Tensor &rhs) {myrank=rhs.myrank; shape=rhs.shape; groupsizes=rhs.groupsizes; cumsizes=rhs.cumsizes; data=rhs.data; return *this;};
inline Tensor& operator*=(const T &a) {data*=a; return *this;};
inline Tensor operator*(const T &a) const {Tensor r(*this); r *=a; return r;};
inline Tensor& operator/=(const T &a) {data/=a; return *this;};
inline Tensor operator/(const T &a) const {Tensor r(*this); r /=a; return r;};
void put(int fd) const;
void get(int fd);
//@@@TODO - unwinding to full size in a specified index
//@@@TODO - contractions - basic and efficient? first contraction in a single index; between a given group+index in group at each tensor
//@@@ dvojite rekurzivni loopover s callbackem - nebo iterator s funkci next???
//@@@nebo inverse index function?
//@@@ stream i/o na zaklade tohoto
//@@@permuteindexgroups
//@@@symmetreize a group, antisymmetrize a group, expand a (anti)symmetric grtoup
//@@@@@@+= -= + - on same shape
};
template<typename T>
int Tensor<T>:: calcrank()
{
int r=0;
for(int i=0; i<shape.size(); ++i)
{
if(shape[i].number==0) laerror("empty index group");
r+=shape[i].number;
}
return r;
}
template<typename T>
LA_largeindex Tensor<T>::calcsize()
{
groupsizes.resize(shape.size());
cumsizes.resize(shape.size());
LA_largeindex s=1;
for(int i=0; i<shape.size(); ++i)
{
if(shape[i].number==0) laerror("empty index group");
if(shape[i].range==0) return 0;
cumsizes[i]=s;
switch(shape[i].symmetry)
{
case 0:
s *= groupsizes[i] = longpow(shape[i].range,shape[i].number);
break;
case 1:
s *= groupsizes[i] = simplicial(shape[i].number,shape[i].range);
break;
case -1:
s *= groupsizes[i] = simplicial(shape[i].number,shape[i].range-shape[i].number+1);
break;
default:
laerror("illegal index group symmetry");
break;
}
}
return s;
}
}//namespace
#endif